

DIGITALISATION DES PROCÉDÉS EXEMPLES CONCRETS D'APPLICATION

Mathieu CURA Ana CAMEIRAO

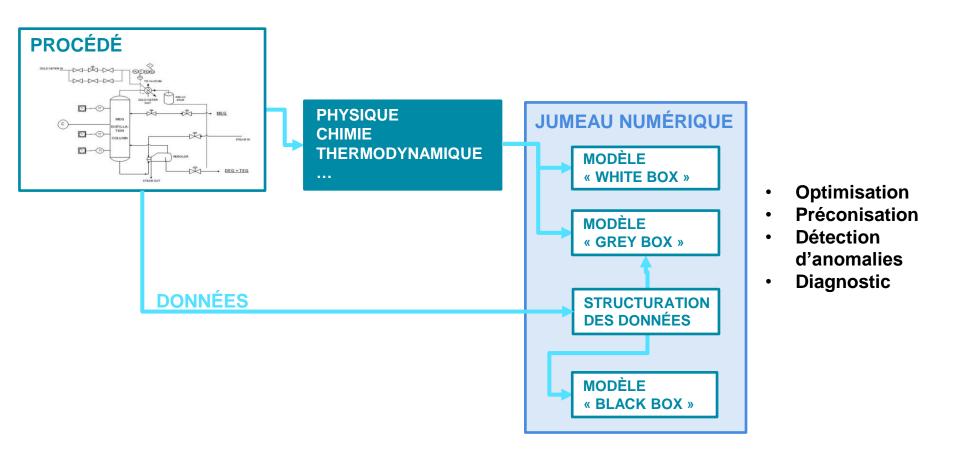
DIGITALISATION DES PROCÉDÉS

DIGITALISATION DU PILOTE À L'USINE

DES ENJEUX DIFFÉRENTS

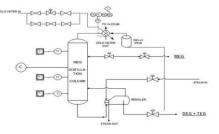
Accélérer le cycle de développement et de mise au point des procédés

- Automatisation et fiabilisation
- Suivi en continu pour une plus grande réactivité
- Réduction des temps de traitement et d'analyse des données


JUMEAU NUMÉRIQUE DU PROCÉDÉ

Optimiser la performance des procédés

- Optimisation en continu pour compenser la variabilité générée par les matières premières et les installations.
- Analyse des dérives et détection d'anomalie


LE JUMEAU NUMÉRIQUE COMBINER DONNÉES ET CONNAISSANCES PROCÉDÉ

DIGITALISATION DES PROCÉDÉS

QUELLE APPROCHE EN TERMES DE SOLUTION

PROCÉDÉ

Données issues :

- Des capteurs et automatismes
- Des analyseurs en ligne
- Des analyses de laboratoire
- Des suivi et contrôles manuels
- ...

COLLECTE DES DONNÉES EN CONTINU

STRUCTURATION DES DONNÉES

Séries temporelles

Données vectorielles

Traçabilité (batch, cycles...)

Généalogie

Evènements

Equipements

IMPLÉMENTATION DES MODÈLES

Exécution des modèles (white, grey, black box) sur les données structurées

- Optimisation
- Préconisation
- Détection d'anomalies
- Diagnostic

EXEMPLES CONCRETS D'APPLICATION

EXEMPLE CONCRETS

ERAMET IDEAS - PILOTE INDUSTRIELS

Digitalisation de pilotes de recherche en hydrométallurgie.

La digitalisation a permis :

- de redonner la main aux équipes terrain.
- démultiplier leurs capacités d'action grâce à une vision en continu du procédé (bilan matières, rendements...) pour un pilotage plus performant et agile.
- de réduire de 50% de temps dans la production des rapports de recherche.
- d'archiver les données des essais pilotes dans la durée sans perdre de granularité ni de contexte.

EXEMPLE CONCRETS

DELTALYS – TRAITEMENT DE BIOGAZ

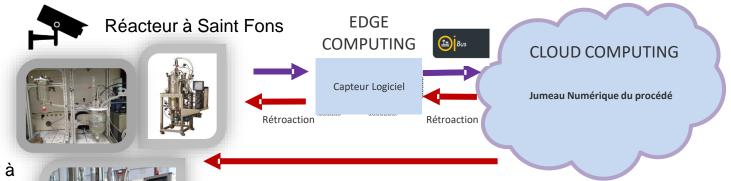
Digitalisation des installation de traitement de biogaz.

La digitalisation a permis :

- d'avoir une vue d'ensemble du fonctionnement procédé du parc.
- d'intégrer les résultats d'analyse en lignes ou manuelles de gaz.
- d'analyser les variabilités de performance des procédés.
- de modéliser le comportement des consommables pour anticiper leur remplacement en temps réel.

Une école de l'IMT

Digital for Eco Industry Formation et Conseil


Ana CAMEIRAO (Mines)
Anthony RUIZ, Maxime LECLUSE (INEVO)
Mathieu CURA (Optimistik)
Franck BACO-ANTONIALI (Axel'One)

Céline GOBIN, Estela Guzman Pinelli (Axelera)

(Modification à partir d'un schéma fourni par Optimistik)

Digital for Eco Industry _ Démonstration et Formation

Cristallisoir à Saint-Etienne

Extrudeuse à Solaize

Optimisation en temps réel de <u>Procédés Chimiques</u> en continu Suivi en temps réel des indicateurs de la performance de production, énergétique et environnementale.

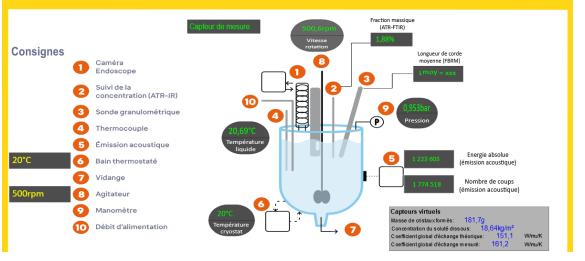
Salle de formation

Synoptique du procédé

Indicateurs de performance

Rendement

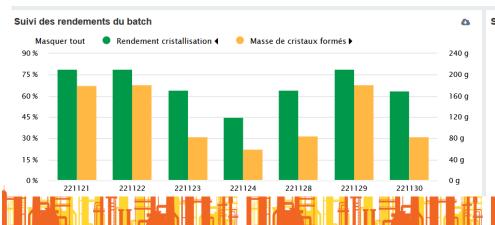
₽ 🔁 🛍

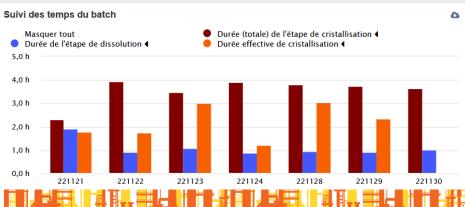

Rendement cristallisation

79,3 %

CRISTALLISOIR

Indicateur environnemental volume solvant (m3) / tonne cristaux 13,8 eau de refroidissement consommée (m3) / tonne cristaux 13 611,5 Indicateur énergétique **₽** 🔁 🛍 kWh / tonne cristaux 9 906,5 Prix kWh de l'énergie consommée / kg cristaux 1,4 €


Couplage données process et jumeau numérique pour un meilleur contrôle du procédé



Visualisation de la performance du procédé au fil des lots de production

Données calculées

Récapitulatif des batchs								
Nom Début	Fin	Batch - Nom du soluté	Batch - Nom du solvant	Masse initiale du soluté	Masse initiale du solvant	Masse de semences	Taille moyenne des semences	Masse de cristaux produits
221124 24/11/2022 10:35	24/11/2022 15:24	acide adipique	eau	132,4 g	2,499 kg	1,000 g	117,0 µm	59,58 g
221123 23/11/2022 10:30	23/11/2022 15:04	acide adipique	eau	131,2 g	2,478 kg	1,000 g	117,0 µm	83,90 g
221122 22/11/2022 10:40	22/11/2022 15:32	acide adipique	eau	228,9 g	2,494 kg	1,000 g	117,0 µm	181,2 g
221121 21/11/2022 11:00	21/11/2022 15:15	acide adipique	eau	228,6 g	2,507 kg	1,000 g	117,0 µm	180,4 g

Digital for Eco Industry _ Formation et Conseil

Offre de formation (Labelisée et accompagnée par Axelera) :

Module 1 (formateurs MSE, Inevo, Optimistik, Axel'One): Découvrir et Expérimenter l'industrie 4.0 (3 j)

Module 2 (Formateurs MSE): Introduction à la mise en œuvre des capteurs analogiques et numériques (3 j)

Module 3 (Formateurs Inevo) : Contextualisation de données réussie et rapide (1 j)

<u>Prochaines périodes de formation</u>:

- **♦** 6-7-8 juin 2023
- 21-22-23 novembre 2023
- 12-13-14 mars 2024
- ❖ 4-5-6 juin 2024
- ❖ 19-20-21 novembre 2024

➤ Plus d'infos et inscriptions sur : https://www.diwii.fr/

Digital for Eco Industry _ Conseil

Conseil au près des entreprises du procédé par les membres du consortium (*Référencé Industrie du Futur*) :

- 1 à 4 jours en entreprise
- émission d'une feuille de route pré chiffré

Preuve de concept :

- Evaluation de capteurs
- Test de produits
- Test de data sur logiciel
- Dimensionnements
- Développement de modèles d'opérations unitaires

Offre R&D:

Programmes plus longs sur expérimentation et/ou modélisation

Labelisé et accompagné par Axelera

