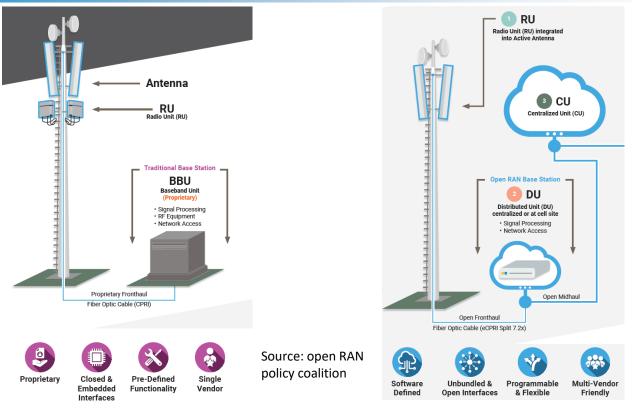
GRADUATE SCHOOL AND RESEARCH CENTER AT THE HEART OF THE DIGITAL SOCIETY



Democratizing innovation in the 5G era

Florian Kaltenberger (Eurecom) Colloque IMT : Réseaux du futur, 14.10.2021

Traditional RAN → Open RAN ♀ RAN

14/10/2021

Florian Kaltenberger

Open RAN ≠ Open Source

- But combination of both is a powerful tool to build sovereign networks
- **OpenAirInterface** (OAI) is the **most complete**, **open-source** implementation of 3GPP 4G/5G RAN and EPC/5GC
- Other types of open-source software
 - ORAN OSC (partially open-source RAN, 3GPP-friendly licensing)
 - srsLTE/srsRAN (4G/5G RAN, OSI licensing)
 - OMEC (EPC, OSI Licensing)
 - Magma (EPC/5GC, OSI Licensing)
 - Free5gc (5GC, OSI Licensing)
 - Open5gs (EPC/5GC, OSI Licensing)

The OpenAirInterface Software Alliance

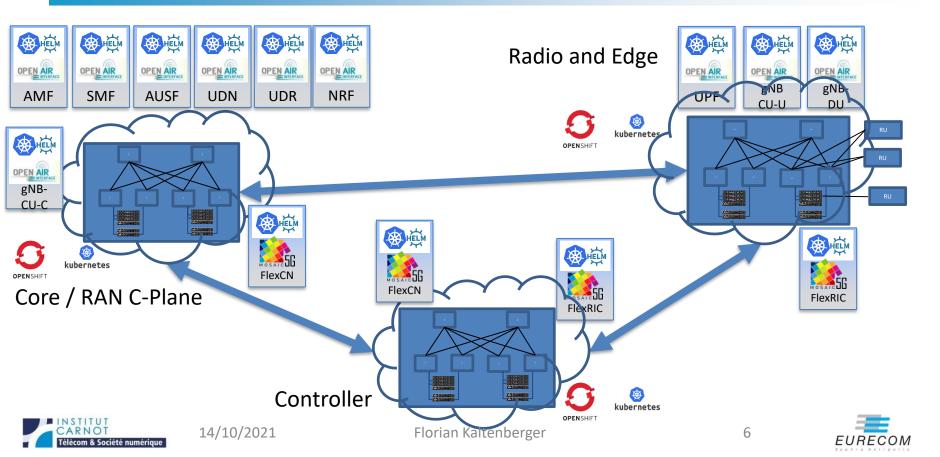
- Launched in 2014 as an endowment fund (French "Fonds de Dotation")
- Current strategic members

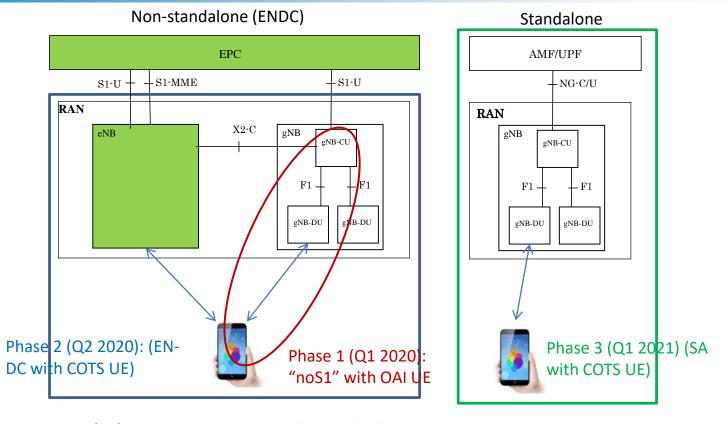
- Many associate members
- Goals:

orange

- Promote OpenAirInterface and its open-source licensing model
- Support the community of developers and users
- Accept donations to maintain engineering support team

Project Groups


- OAI Public License Components
 - 4G / 5G RAN : eNB/gNB/UE L1/L2 Network functions, RF modeling
 - 5G Core : 3GPP Service-Based Architecture Network functions
 - Mosaic5G : RAN and Core Controller functions, Orchestration and Management
- 3-Clause BSD Components
 - Rel16 MME (4G/5G NSA) as part of Magma Foundation



OAI cloud native deployment

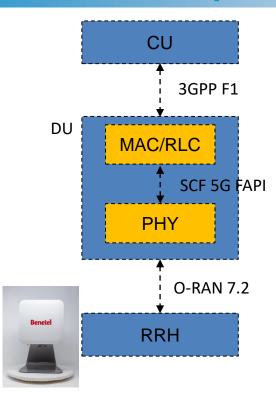
OAI 5G deployment options

NO

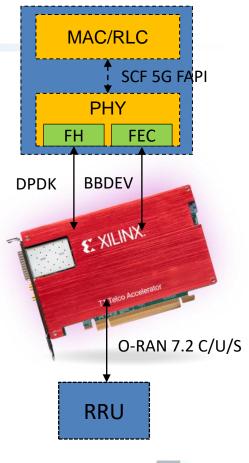
OAI supported hardware platforms

- Tested RRUs
 - USRP B210, X310, and N310 (for LTE and NR)
 - Benetel RRU (NSA bands 7 and n78 only): O-RAN 7.2 split
 - AW2S (LTE and NR): eCPRI
- Tested UEs
 - Oppo Reno 5G
 - Samsung A90 5G
 - Samsung A42 5G
 - Google Pixel 5G
 - Simcom SIMCOM8200EA
 - Quectel RM500Q-GL
 - Huawei Mate 30

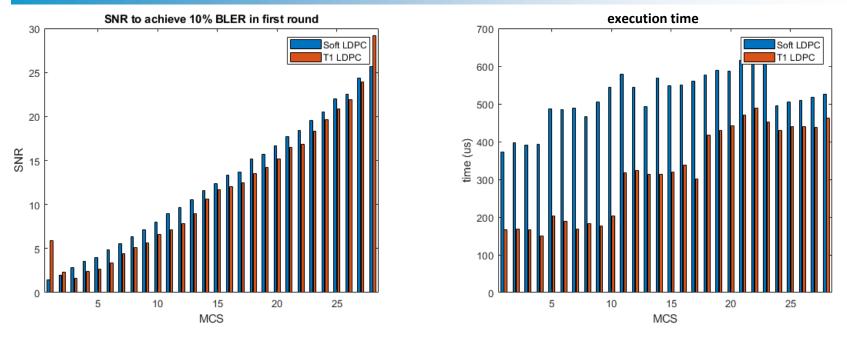
SA & NSA



Functional splits in OAI 4G/5G


- F1-C and F1-U
 - Revised implementation under integration
 - Interoperability testing with Acceleran ongoing
- 5G FAPI
 - today all L1 procedures compliant with SCF 5G FAPI
 - 5G nFAPI
- Fronthaul
 - O-RAN 7.2 U-plane done (with Benetel)
 - Interoperability with other RRUs planned for 2H 2021
 - Integration of Xilinx T1 card

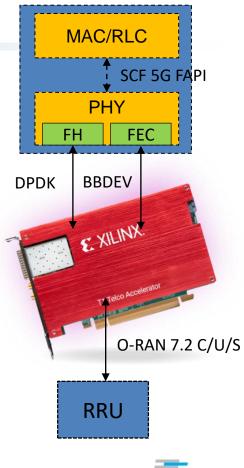
T1 LDPC Offload


- Channel coding/decoding consumes most energy/processing time
 - 91% of total RX processing time in OAI
- Xilinx T1 accelerator card
 - Contains ZU19EG MPSoC and ZU21DR RFSoC
 - Offload of forward error correction and fronthaul
 - Bitstream and drivers provided by VVDN
- LDPC channel decoding integrated in OAI
 - Works with nr_ulsim and nr-softmodem

T1 LDPC Offload

NR-PUSCH, SCS 30kHz, 106PRB, 12OFDM symbols, 1 DRMS, SISO, TDL-C channel

Florian Kaltenberger, Hongzhi Wang, Saktivel Velumani, "Performance evaluation of offloading LDPC decoding to an FPGA in 5G baseband processing," Workshop on Smart Antennas (WSA2021), Sophia-Antipolis, France, 10-12.11.2021.


14/10/2021

Florian Kaltenberger

T1 Fronthaul

- Xilinx T1 accelerator card
 - Contains ZU19EG MPSoC and ZU21DR RFSoC
 - Offload of forward error correction and fronthaul
- Goal2: use card for O-RAN 7.2
 fronthaul offload
 - Need O-RU for testing

Roadmap 2021

- Stabilize X2 and S1 procedures in NSA
 - To recover from errors on 4G or 5G link failures
- Improve throughput
 - Target1: 100/400Mbps DL, 30Mpbs UL (SISO/MIMO 106 PRB) (USRPs)
 - Target2: 200/800Mbps DL, 60Mpbs UL (SISO/MIMO 273 PRB) (high-end RRU)
- Link adaptation based on CQI (incl MIMO)
- Basic NSA FR2 interoperability
 - Including beamforming procedures
 - Ongoing, debugging initial access procedure
- DL MIMO support (4x4)
 - Including CSI RS and feedback reporting
- Support for flexible bandwidth and subcarrier spacing
 - 60kHz SCS (Also requires multiplexing multiple SCS)
 - 10/20/40/50/60/80/100 MHz bandwidth part
 - Support for multiple bandwidth parts
- SDAP support
- F1AP integration with commercial CU solution (Accelleran)

Roadmap 2022

- Integration of TTCN-3 interfaces in eNB and gNB
 - All software conformance testing of UE protocol stack (Sequans, Firecell)
- E1AP and CU-C/U separation
- Support for localization (Rel 16)
- SA specific
 - Support for FR2
 - Handover Procedures (Xn)
 - Support for Non-terrestrial networks (Rel 17)
- Support O-RAN 7.2 fronthaul
 - Control and user plane
 - Using T1 card and commercial RRU
- Support O-RAN interfaces (E1, O1)

THANK YOU

14/10/2021

Florian Kaltenberger

Status of 5G NSA development

- Non-standalone EN-DC with COTS phones since August 2020
 - FR1, static TDD (5ms, 7-1-2), 30kHz subcarrier spacing, 106PRB (40MHz), SISO
 - No split bearer, traffic is redirected to 5G cell
- Current performance
 - 80Mbps DL throughput (with 64QAM)
 - 7Mbps UL throughput (with QPSK, to be improved)
 - Up to 2 users tested
- Tested Core networks
 - OAI EPC
 - Nokia LTEbox

Status of 5G SA development

- First complete attach: 4th May 2021
- First DL and UL user-plane traffic (ping): 18th May 2021
- Same PHY configuration as NSA
- Current performance:
 - Latency: 9ms (mean)
 - Stability: up to 1h (without pushing traffic too much)
 - 20Mbps max DL throughput (with 64QAM, to be improved)
 - 7Mbps max UL throughput (with QPSK, to be improved)
- Some regressions were introduced in current develop (Sept 2021)
 - Fixes on the way
- Some CI tests are broken/incomplete
 - Issues with USRP N310 and UHD 4.x
- Validated Core networks
 - OAI 5GC and
 - Nokia Sabox
 - Free CN

Additions for SA

- CORESET0, SIB1, initial BWP
- Contention based initial access
 - Retransmissions of msg3/msg4
- RRC:
 - RRCSetup[Complete]
 - SecurityMode[Command|Complete]
 - UECapability[Request|Indication]
 - RRCReconfiguration[Complete]
 - Done in multiple steps
 - [DL|UL]InformationTransfer
 - Integration with NAS
- RLC: Handling of SRB0, SRB1, DRB
- PDCP: security (integrity)
- NGAP: connection to AMF
- GTPU: connection to UPF

- Supporting "noS1" mode (DL and UL):
 - Creates TUN interface to PDCP to inject and receive user-place traffic
 - No connection to the core network
- Supporting Standalone (SA) mode:
 - UE can register with the 5G Core Network, establish a PDU Session and exchange userplane traffic

FR1 MIMO status

- In develop branch
 - PHY layer support (gNB and UE) for 4x4 antennas and 2 layers max.
 - Validated in simulation and over-the-air using phy-test mode
 - Transmission of CSI-RS
- Ongoing developments/testing
 - Make Precoder matrices standard-compliant and integrate with SCF FAPI interface
 - MAC procedures to analyze and apply the CSI report in terms of CQI and RI, for MCS and nb of layers
- Todo
 - UE: CSI-RS receiver and CSI report

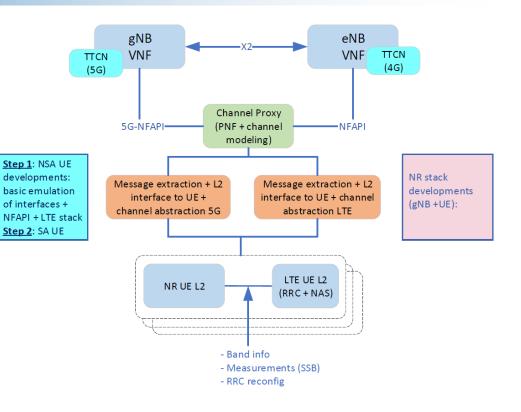
FR2 NSA status

- Basic development of PHY & MAC for FR2 done
 - 120kHz subcarrier spacing
 - Beamforming support (using GPIO to control external RF)
 - Transmission of multiple SSBs
 - Support for multiple PRACH occasions for initial beam correspondence.
- Tests with OAI gNB + OAI UE ok
 - Using intermediate frequency ~5GHz
 - Real-time operation ok
 - Initial beam selection ok
- Interoperability with COTS phone: not yet
 - Phone not even seeing 5G cell during inter-RAT measurements

Roadmap 2021

- Stabilize X2 and S1 procedures in NSA
 - To recover from errors on 4G or 5G link failures
- Improve throughput
 - Target1: 100/400Mbps DL, 30Mpbs UL (SISO/MIMO 106 PRB) (USRPs)
 - Target2: 200/800Mbps DL, 60Mpbs UL (SISO/MIMO 273 PRB) (high-end RRU)
- Link adaptation based on CQI (incl MIMO)
- Basic NSA FR2 interoperability
 - Including beamforming procedures
 - Ongoing, debugging initial access procedure
- DL MIMO support (4x4)
 - Including CSI RS and feedback reporting
- Support for flexible bandwidth and subcarrier spacing
 - 60kHz SCS (Also requires multiplexing multiple SCS)
 - 10/20/40/50/60/80/100 MHz bandwidth part
 - Support for multiple bandwidth parts
- SDAP support
- F1AP integration with commercial CU solution (Accelleran)

Roadmap 2022


- Integration of TTCN-3 interfaces in eNB and gNB
 - All software conformance testing of UE protocol stack (Sequans, Firecell)
- E1AP and CU-C/U separation
- Support for localization (Rel 16)
- SA specific
 - Support for FR2
 - Handover Procedures (Xn)
 - Support for Non-terrestrial networks (Rel 17)
- Support O-RAN 7.2 fronthaul
 - Control and user plane
 - Using T1 card and commercial RRU
- Support O-RAN interfaces (E1, O1)

L2 emulator for NSA

- Uses 4G and (new) 5G nFAPI
- Includes NSA UE
 - That can be re-used also with USRP
- Same framework used for TTCN-3 project
 - Using Sequans UE stack
- Under integration in develop

Status of 5G NTN developments

- Rel15 and Rel16 features necessary for NTN already part of public OAI repository
 - FDD support
 - Multiple DMRS support
 - 10MHz bandwidth support
- Initial development based on Rel17 drafts started by Fraunhofer IIS
 - Extension of time domain allocation (k2) for PUSCH scheduled by RAR UL grant
 - Extension of time domain allocation (k2) for PUSCH scheduled by DCI
 - Extension of RAR window
 - Disabling of HARQ

