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4CONTEXT

Coexistence is a major concern as more devices begin to operate on unlicensed bands. Many 

networks share the same bandwidth but PHY/MAC layer characteristics or application requirements may 

differ;

Different networks will be uncoordinated, it is difficult to assess for a given network in real time its 

impact on another (i.e., interference). 
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What is interference?

Collection of other transmitters using 

the same frequency band at the same 

time (from the same networks but not 

necessarily).

I= σ𝑘∈Φ𝑡
𝑟𝑘,𝑡

−
𝜂

2ℎ𝑘,𝑡𝑥𝑘,𝑡

Channel PHY layer

Source: x(t)
Destination: y(t)

All the contributions add at the destination.
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Brief state of the art

Common approach: interference is modelled by a Gaussian random process.

Problem:

→ when the number of interferers is large but there are dominant interferers

In many cases, the interference pdf exhibits a heavier tail than what is predicted by 

the Gaussian model. 

→ impulsive interference: Middleton Class A, Gaussian-mixture, generalized 

Gaussian, Laplace, a-stable...
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𝐼 = ෍

𝑘=1

∞

𝑟𝑘
−
𝜂
2ℎ𝑘𝑥𝑘 = ෍

𝑘=1

∞

𝑟𝑘
−
𝜂
2 𝑧𝑘,𝑟 + 𝑖𝑧𝑘,𝑖

From a Poisson Point Process

Mapping theorem: 𝑟𝑘
2 is a 1D-PPP with intensity λ𝜋

Lepage Series representation of SaS random variables

𝐈 = 𝒁𝒓 + 𝒊𝒁𝒊 is an isotropic 4/h-stable and

𝝈𝑵 = 𝝅𝝀𝑪𝟒
𝜼

−𝟏𝔼 𝓡 𝒉𝒌𝒙𝒌

𝟒
𝜼

𝜼
𝟒
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a-stable
• Parametric : 4 parameters: a, in ]0,2], is the characteristic exponent (how 

impulsive), b the skewness, dispersion, location.

• Gaussian is a special case
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Introducing access policy.

To make it “simple”: One user access a Frequency block with probability p.

The access policy can introduce dependence 

between different blocks. How can we model it?
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How to introduce dependence?

Traditionally 

• Finite second order moments

• Correlation coefficient is an adapted concordance measure

𝜌𝑋,𝑌 =
𝐸 𝑋 − 𝜇𝑋 𝐸 𝑌 − 𝜇𝑦

𝜎𝑋𝜎𝑌
But:

• Not adapted to impulsive interference (and especially a-stable distributions)

• Do not allow to model tail dependence (simultaneous strong samples in the 

same vector)

As a consequence we are interested in other dependence 

models allowing more flexible concordance measures.
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Multivariate a-stable models exist… but are difficult to handle (intractable distribution 

function).

As an alternative, we keep the marginal behavior of the stable random variables 

and propose a copula to model the dependence structure

Copulas

We can define a copula as follows. Consider a random vector 𝑋 ∈ 𝑅𝑑 with a 

continuous distribution F. Then to X one can associate a d-copula 𝐶: 0,1 𝑑 → 0,1
defined by:

𝐹 𝑥1, 𝑥2, … , 𝑥𝑑 = 𝐶 𝐹1 𝑥1 , … , 𝐹𝑑 𝑥𝑑

Marginals (1D) distributions of 𝑋𝑖
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Model validity - K = 4 blocks and N = 2 subcarriers in each block
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Five distinct locations at street level 

within Aalborg

• shopping area,

• business park, 

• hospital complex, 

• industrial area, 

• residential area.

Measured power measurements on 

• a frequency grid from 863 to 870 Mhz,

• with 7kHz bins,

• sampling time was 200 ms,

• measurements were conducted during two hours.
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We focus on a LoRa-like receiver.

• Frequency band of 125 MHz (we 

aggregate 18 bands of 7 MHz, which 

makes 126 MHz bands)

• We select a time-frequency window 

where interference is stationary. 

• Resource block: time-frequency area 

of 200ms and 126 MHz



How to define impulsiveness? “Rare” events with “large” values

Can be related to “a larger probability of getting very large values”

https://reference.wolfram.com/language/guide/HeavyTailDistributions.html

We can find several ways to define it, one interesting is:

✓ Heavy Tail (A distribution with a “tail” that is “heavier” than an Exponential) 

have tails which fail to satisfy the following bound on the complementary 

cumulative distribution function ത𝐹 𝑥 = ℙ 𝑋 > 𝑥 for any positive real numbers M and t, 
ഥ𝑭 𝒙 ≤ 𝑴𝒆−𝒕𝒙, ∀𝒙 > 𝟎. (log-normal, Weibull, Pareto, a-Stable…) 
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Definitely Heavy Tail behavior
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Log-tail test

The idea is to represent the 

log of the survival function 

𝐥𝐨𝐠 ഥ𝑭 𝒙 as a function of 

𝐥𝐨𝐠 𝒙 . For heavy-tailed 

distribution we will obtain a 

straight line while for 

exponential distributions 𝛾
will be 0 leading to a very 

abrupt fall.
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Receiver design

We use a LDPC code.

The input of the decorder (Belief Propagation) is based on the log-

likelihood ratio.

In the Gaussian case it is a straight line. In an impusive case it is not !

Gaussian case Stable case 
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𝐿𝑎,𝑏 𝑥 = min 𝑎𝑥, 𝑏
𝑥

We approximate the 

LLR with a simple 

function

This, in fact, does

not depend on the 

noise/interference

distribution
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Example with a 

Middleton class A noise.

• Very poor

performance of the 

linear receiver

• Significant

improvement with the 

non linear approach

• The approximation 

works well

HANDLING INTERFERENCE
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But it fails with short 

codewords

• Estimation problems due 

to the impulsive noise

• We need to improve the 

optimisation case 

HANDLING INTERFERENCE
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Main conclusions

Gaussian interference is not always adapted (it depends on the variation of the 

interferer set)

Impulsive interference is more complex to model but we can use an a-stable 

distribution.

• The characteristic exponent (a) is linked to the channel attenuation

• The dispersion is linked to the density of users, the PHY layer and the fading

Dependence can in that case be modeled with a t-copula

• The degrees of freedom is linked to the probability of access to a resource block
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