

APPROXIMATE **COMPUTING FOR EMBEDDED MACHINE** LEARNING YANG XUECAN

EURECOM

Une école de l'IMT

Une école de l'IMT

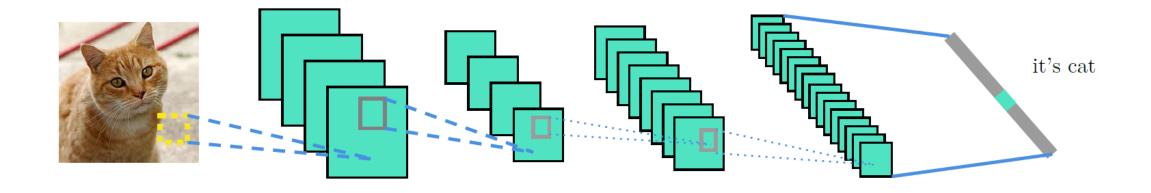
Une école de l'IMT

OUTLINE

- **1. Motivation and Related works**
- 2. Approximate Operation to multiplication
- 3. Building MinConvNets with approximate operation
- 4. Conclusion

1. Motivation and Related works

USE CASE OF DEEP CONVOLUTIONAL NEURAL NETWORK

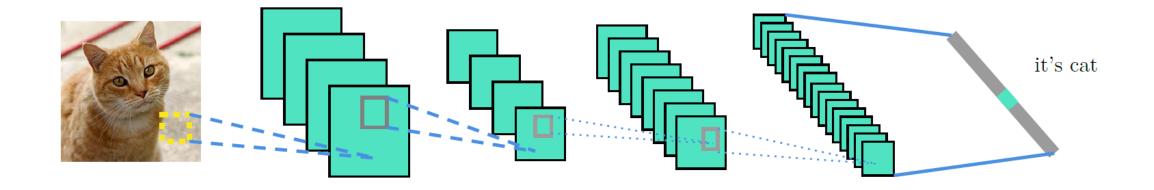


Classification: Traffic lights is red !

Object detection: The car is here !

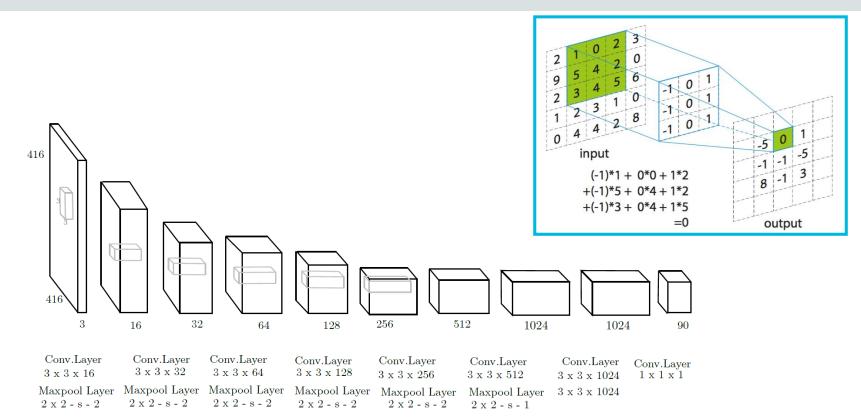
Object tracking: It has to pay a fine !

USE CASE OF DEEP CONVOLUTIONAL NEURAL NETWORK

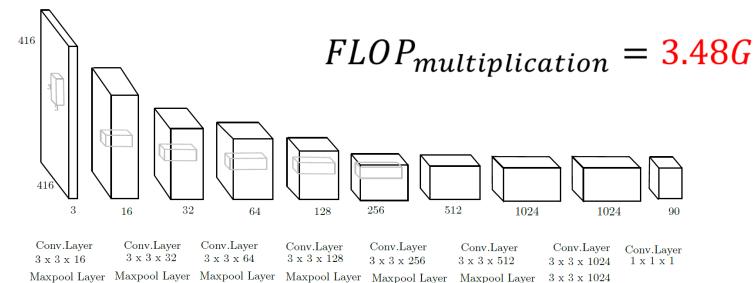


APPROXIMATE COMPUTING FOR EMBEDDED MACHINE LEARNING

TINY-YOLO [REDMON ET AL.'2016] FOR OBJECT DETECTION



TINY-YOLO [REDMON ET AL.'2016] FOR OBJECT DETECTION



Challenges for embedded systems

2 x 2 - s - 2

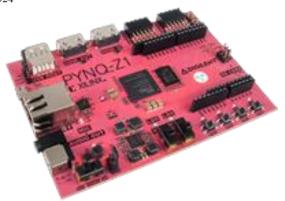
Capacity of computing (multiplicator etc.),

2 x 2 - s - 2

2 x 2 - s - 2

2 x 2 - s - 2

Memory or bandwidth for loading the data.

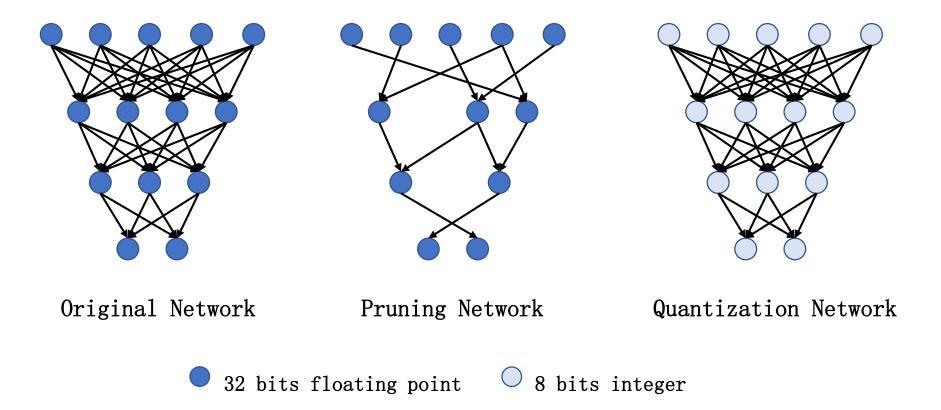


 $2 \times 2 - s - 2$

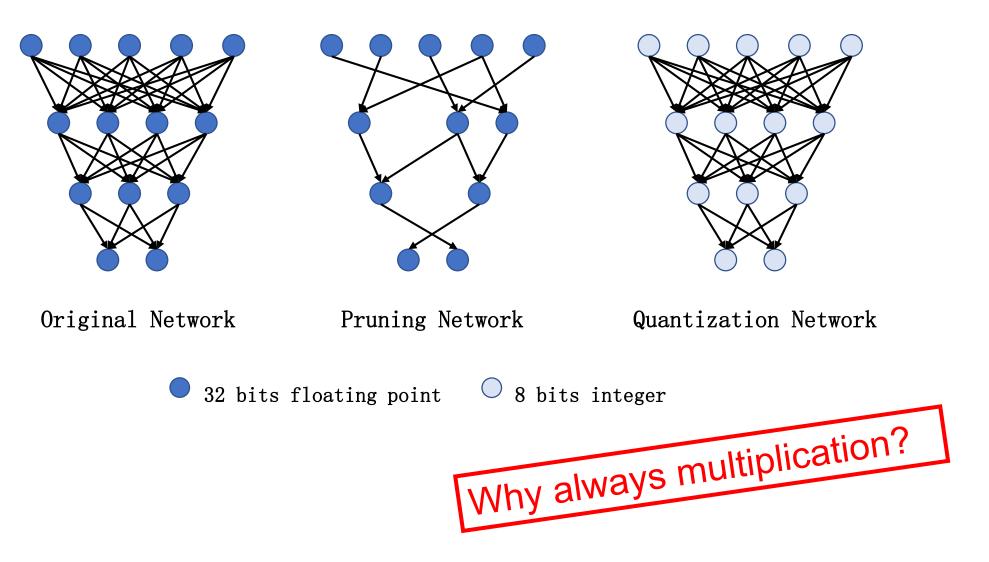
2 x 2 - s - 1

How to reduce the computing resources required for convolution which includes a large volume of multiplications?

RELATED WORKS TO REDUCE THE COMPUTING RESOURCES

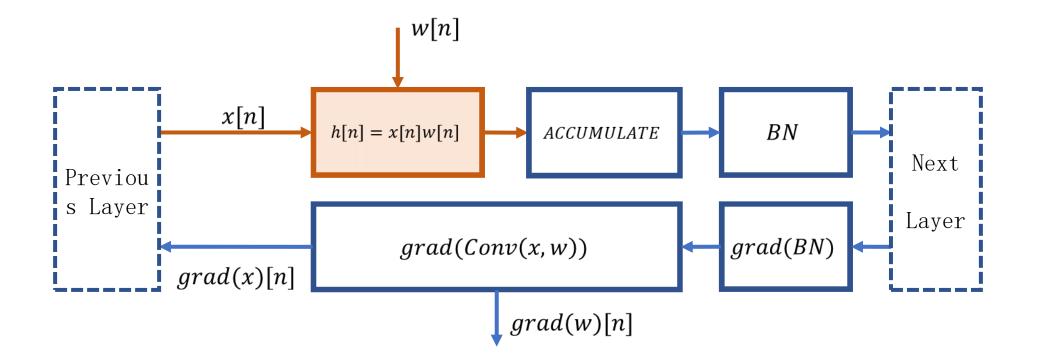


RELATED WORKS TO REDUCE THE COMPUTING RESOURCES

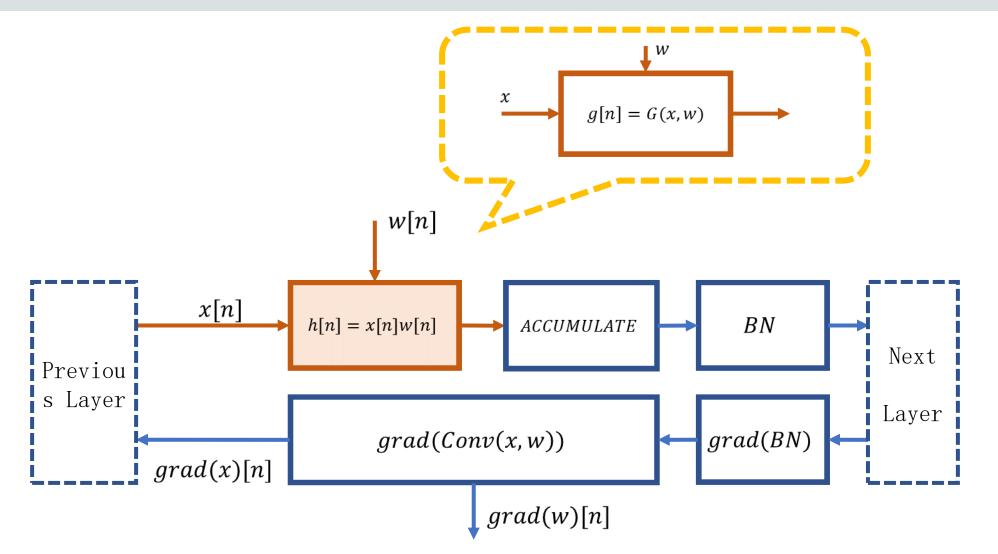


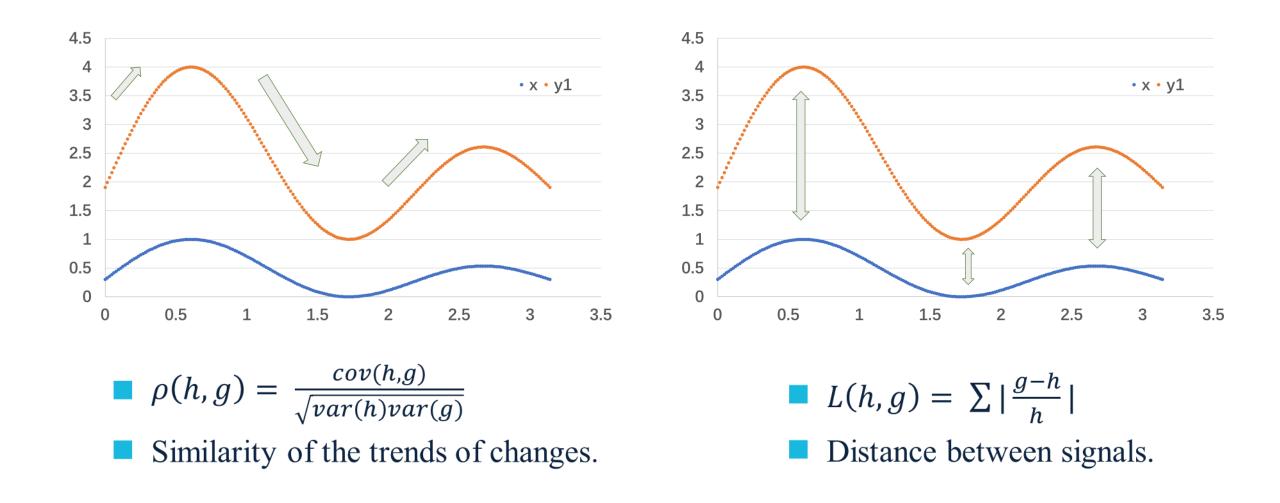
2. Approximate Operation to multiplication

USING APPROXIMATE OPERATION INSTEAD OF MULTIPLICATION?

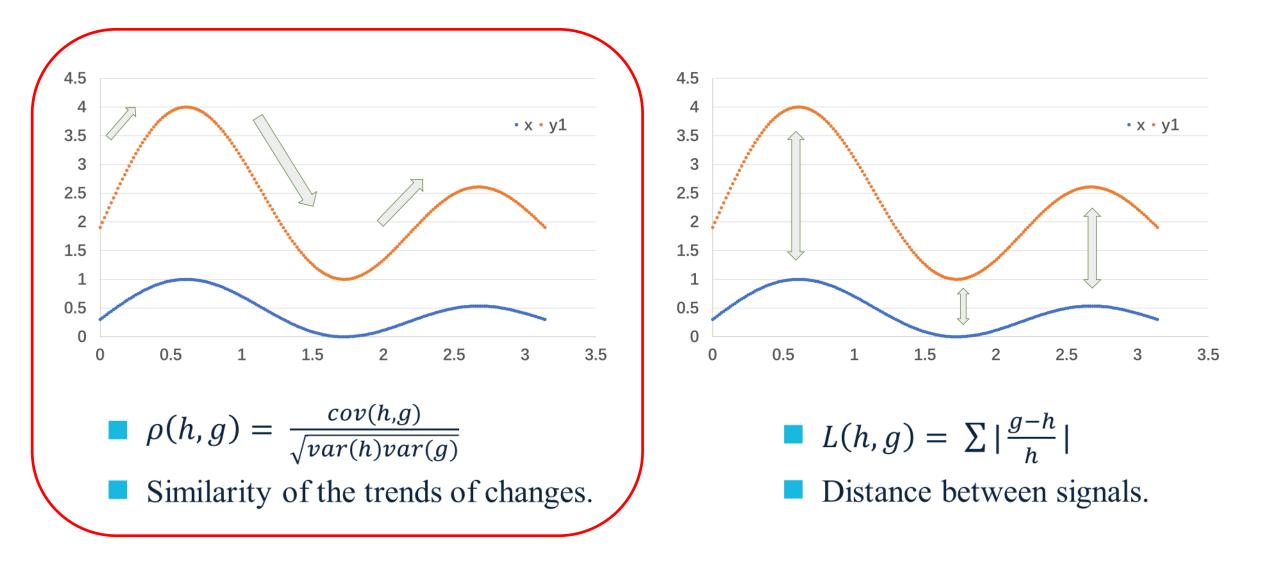


USING APPROXIMATE OPERATION INSTEAD OF MULTIPLICATION?





THE SIMILARITY BETWEEN TWO SIGNALS h AND g



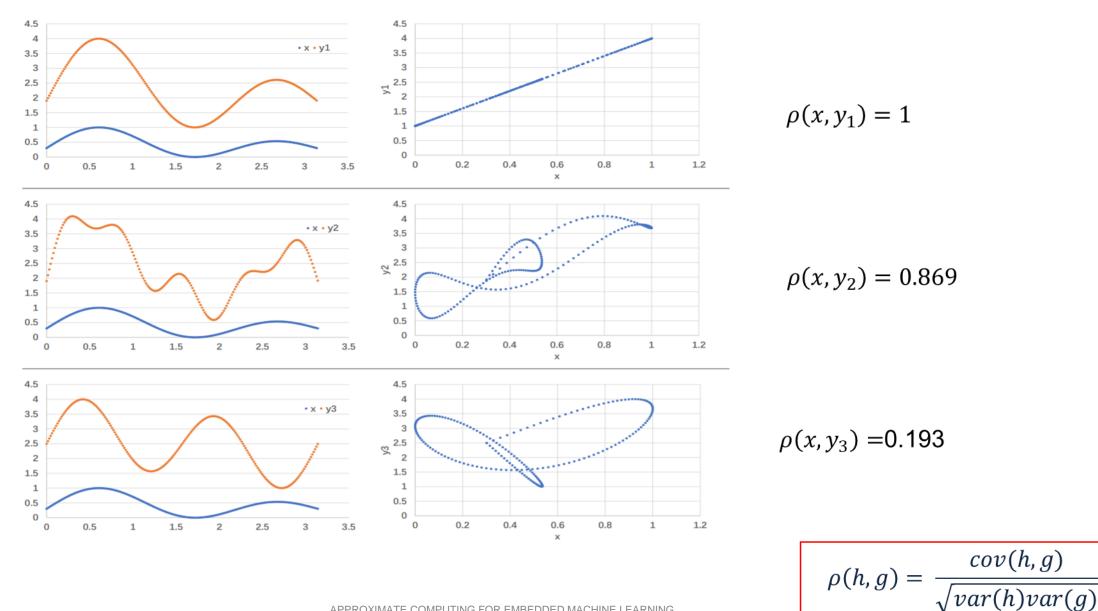
THE SIMILARITY BETWEEN TWO SIGNALS h AND gPearson product-moment correlation coefficient (PPMCC)

$$\rho(h,g) = \frac{cov(h,g)}{\sqrt{var(h)var(g)}}$$

where:

$$\begin{cases} var(h) = \sum_{n} (h[n] - \mu_{h})(h[n] - \mu_{h}) \\ cov(h,g) = \sum_{n} (h[n] - \mu_{h})(g[n] - \mu_{g}) \end{cases}$$

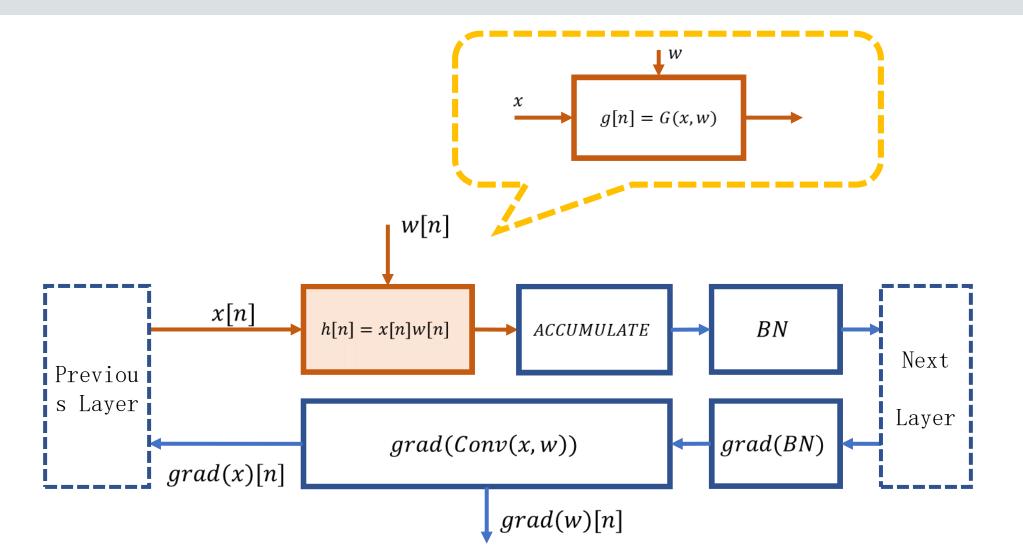
THE SIMILARITY BETWEEN TWO SIGNALS h AND gPearson product-moment correlation coefficient (PPMCC)



cov(h,g)

THE SIMILARITY BETWEEN TWO SIGNALS $h \mbox{ AND } g$

correlation coefficient with multiplication



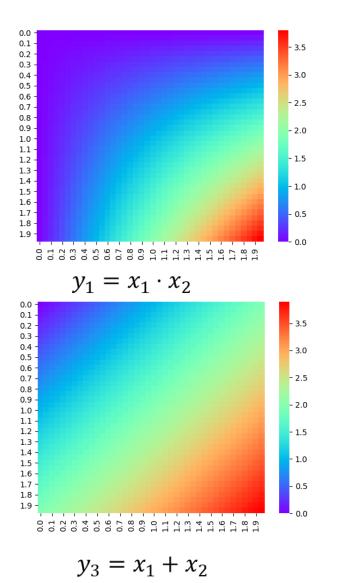
THE SIMILARITY BETWEEN TWO SIGNALS $h \mbox{ AND } g$

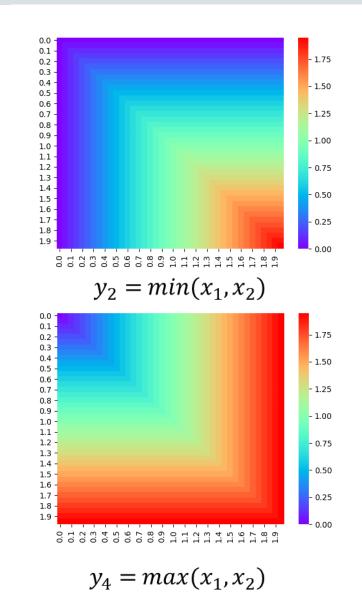
correlation coefficient with multiplication

Correlation with $h = \xi \cdot \eta$	$\begin{aligned} \text{Min-selector} \\ g = min(\xi, \eta) \end{aligned}$	Addition $g = \xi + \eta$	Max-selector $g = max(\xi, \eta)$
$\begin{cases} \xi \sim N_f(0,1) \\ \eta \sim N_f(0,1) \end{cases}$	0.908 0.882		0.673
$\begin{cases} \xi \sim N_f(0,1) \\ \eta \sim N_f(0,10) \end{cases}$	0.692	0.683	0.624
$\begin{cases} \xi \sim U(0,1) \\ \eta \sim U(0,1) \end{cases}$	0.962	0.926	0.641
$\begin{cases} \xi \sim U(0,1) \\ \eta \sim U(0,1) \end{cases}$	0.716	0.717	0.655

- ξ and *η* are non-negative value.
- N_f(μ, σ^2): folded normal distribution with expected value μ , variance σ^2 .
- U(a, b): a uniform distribution in an interval [a, b]

THE SIMILARITY BETWEEN TWO SIGNALS h AND g correlation coefficient with multiplication





APPROXIMATE COMPUTING FOR EMBEDDED MACHINE LEARNING

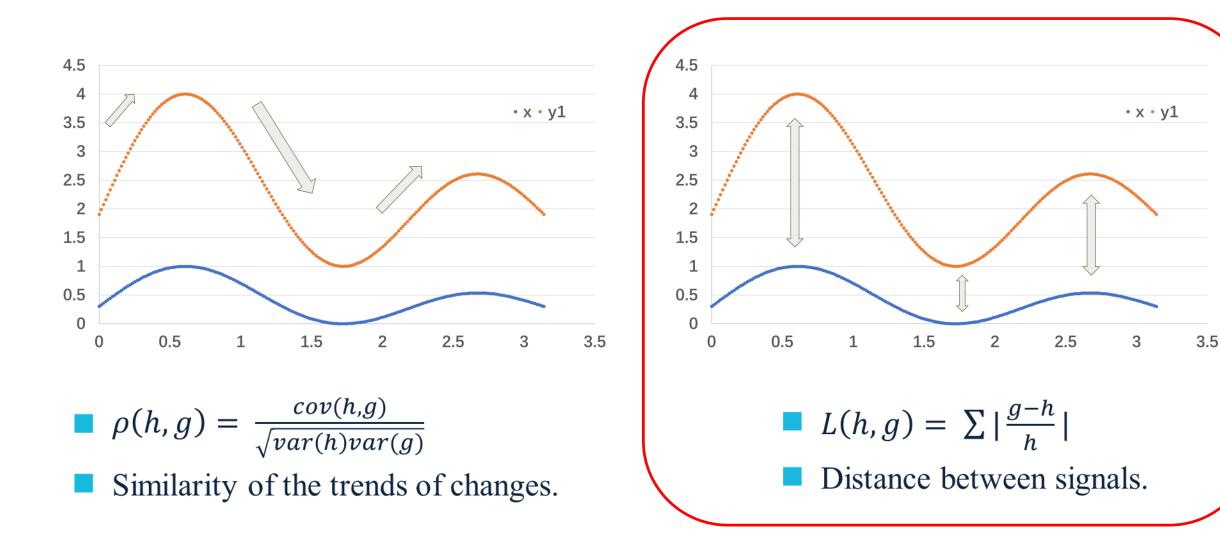
THE SIMILARITY BETWEEN TWO SIGNALS $h \mbox{ AND } g$

Correlation with $h = \xi \cdot \eta$	$Min-selector$ $g = min(\xi, \eta)$	Addition $g = \xi + \eta$	Max-selector $g = max(\xi, \eta)$
$\begin{cases} \xi \sim N_f(0,1) \\ \eta \sim N_f(0,1) \end{cases}$	0.908	0.882	0.673
$\begin{cases} \xi \sim N_f(0,1) \\ \eta \sim N_f(0,10) \end{cases}$	0.692	0.683	0.624
$\begin{cases} \xi \sim U(0,1) \\ \eta \sim U(0,1) \end{cases}$	0.962	0.926	0.641
$\begin{cases} \xi \sim U(0,1) \\ \eta \sim U(0,1) \end{cases}$	0.716	0.717	0.655

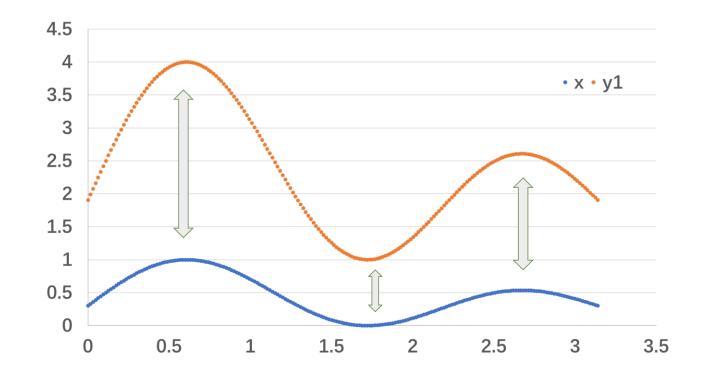
 $h = \xi \cdot \eta$ and $g = \min(\xi, \eta)$ have the similar trends of changes, if:

- ξ and η follow similar distribution:
 - They have the same expected values, noted as $\mu_{|\xi|} = \mu_{|\eta|}$
 - They are distributed in similar intervals, noted as $\sigma_{\xi} \sim \sigma_{\eta}$

THE SIMILARITY BETWEEN TWO SIGNALS $h \ {\rm AND} \ g$



THE DISTANCE BETWEEN TWO SIGNALS h AND g



 $\square L(h,g) = \sum \left| \frac{g-h}{h} \right|$

Find the constraints to make *L* as small as possible.

$$\begin{cases} h = H(\xi, \eta) = \xi \cdot \eta \\ g = G(\xi, \eta) = \min(\xi, \eta) \end{cases}$$

Then the distance between signals is calculated as:

$$L(h,g) = \int_{\xi} \int_{\eta} \left| \frac{H(\xi,\eta) - G(\xi,\eta)}{H(\xi,\eta)} \right| \cdot p_{\chi}(\xi) p_{w}(\eta) d\xi d\eta$$

$$\begin{cases} h = H(\xi, \eta) = \xi \cdot \eta \\ g = G(\xi, \eta) = \min(\xi, \eta) \end{cases}$$

Then the distance between signals is calculated as:

$$L(h,g) = \int_{\xi} \int_{\eta} \left| \frac{H(\xi,\eta) - G(\xi,\eta)}{H(\xi,\eta)} \right| \cdot \frac{p_{\chi}(\xi)p_{w}(\eta)d\xi d\eta}{H(\xi,\eta)}$$

$$\begin{cases} h = H(\xi, \eta) = \xi \cdot \eta \\ g = G(\xi, \eta) = \min(\xi, \eta) \end{cases}$$

Then the distance between signals is calculated as:

$$L(h,g) = \int_{\xi} \int_{\eta} \left| \frac{H(\xi,\eta) - G(\xi,\eta)}{H(\xi,\eta)} \right| \cdot p_{x}(\xi) p_{w}(\eta) d\xi d\eta$$
$$= f_{1} \left(p_{x}(\xi), p_{w}(\eta) \right)$$

$$\begin{cases} h = H(\xi, \eta) = \xi \cdot \eta \\ g = G(\xi, \eta) = \min(\xi, \eta) \end{cases}$$

Then the distance between signals is calculated as:

 $L(h,g) = f_1\left(p_x(\xi), p_w(\eta)\right)$

$$\begin{cases} h = H(\xi, \eta) = \xi \cdot \eta \\ g = G(\xi, \eta) = \min(\xi, \eta) \end{cases}$$

Then the distance between signals is calculated as:

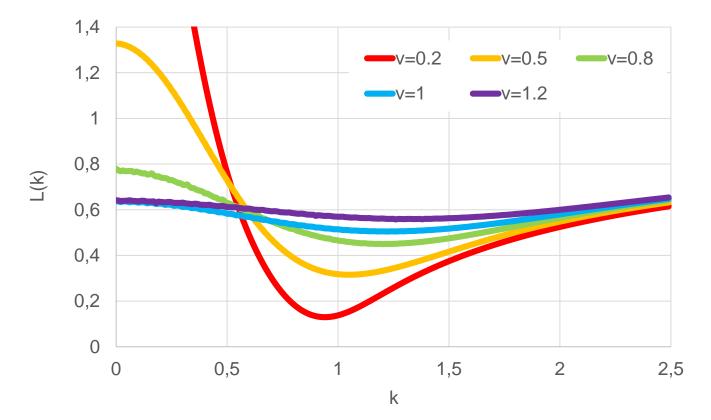
 $L(h,g) = f_1\left(p_x(\xi), p_w(\eta)\right)$

If ξ and $\eta \sim N_f(k, v)$:

$$L(h,g) = f_2(k,v)$$

where k represents the expected values of ξ and η , and v represents the variance of ξ and η .

THE DISTANCE BETWEEN TWO SIGNALS h AND g



To make L(k, v) as small as possible:

- **C1**: *k* that minimizes *L* is around 1, noted as $\mu_{|\xi|} = \mu_{|\eta|} = 1$.
- **C2**: *v* should be as small as possible.

3. Building MinConvNets with approximate operation

BUILD THE APPROXIMATE CONVOLUTION with C1: $\mu_{|\xi|} = \mu_{|\eta|} = 1$.

Let matrix multiplication arbitrary:

$$|z| = |x| \cdot |w|$$

be transformed as:

$$\frac{|z|}{\mu_{|x|}} = \frac{|x|}{\mu_{|x|}} \cdot \frac{|w|}{\mu_{|w|}}$$

That meets constraint $\mu_{|\xi|} = \mu_{|\eta|} = 1$, therefore:

$$\frac{|z|}{\mu_{|x|}\mu_{|w|}} \approx \min(\frac{|x|}{\mu_{|x|}}, \frac{|w|}{\mu_{|w|}})$$

So:

$$|z| = \mu_{|w|} \cdot \min(|x|, \frac{\mu_{|x|}}{\mu_{|w|}} \cdot |w|)$$

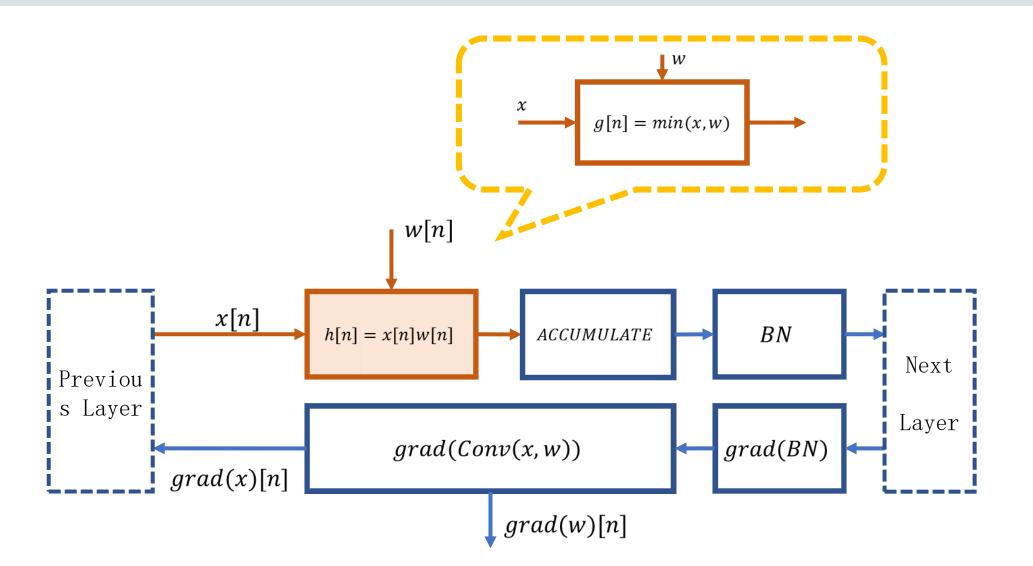
Remove excessively large values:

$$clip(w, \alpha) = \begin{cases} \alpha & if \ w > \alpha \\ -\alpha & if \ w < -\alpha \\ w & otherwise \end{cases}$$

- In these works, $\alpha = 2\mu_{|w|}$ shared by each filter.
- Weights and inputs are both clipped during training.
- Only weights are pre-clipped for inferring.

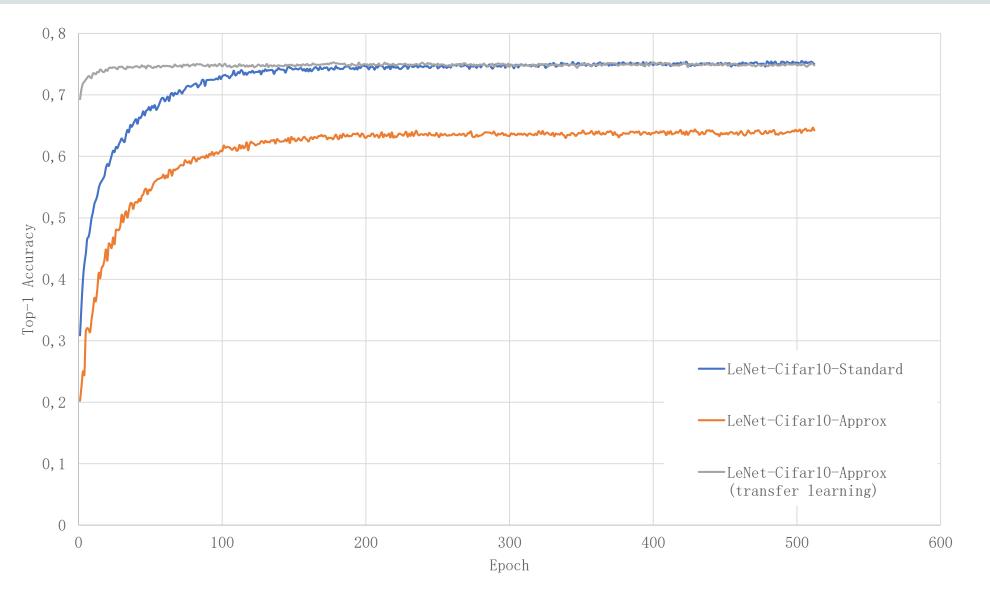
BUILD THE APPROXIMATE CONVOLUTION

with approximate multiplication composed by min-selector



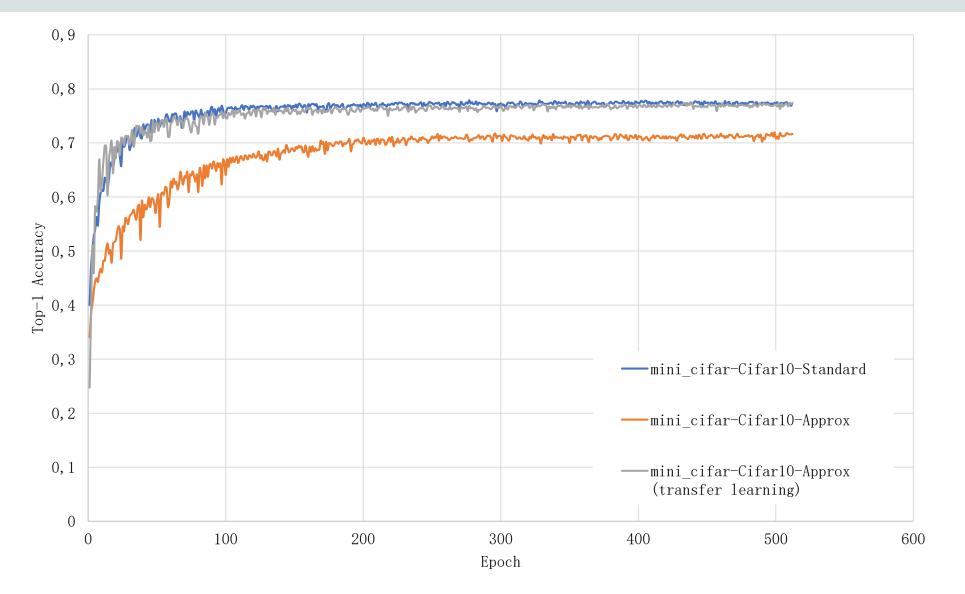
VALIDATION OF MINCONVNET

Top-1 accuracy of LeNet applied to Cifar10



VALIDATION OF MINCONVNET

Top-1 accuracy of mini-Cifar applied to Cifar10



4.Conclusion

Architecture		LeNet-MNIST	LeNet-Cifar10	Mini_cifar-Cifar10
Standard Network		99.06%	75.26%	77.30%
Approximate	170 epoch	98.42%		
	512 epoch		64.18%	71.46%
	2048 epoch		65.54%	72.89%
Transfer Learning	512 epoch		74.92%	77.01%
	1024 epoch		75.10%	77.26%

- Approximate Multiplication is proposed.
- MinConvNets are built by using Approximate Multiplication.
- Transfer Learning is used to optimize the training.

