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3IoT Security Challenges

►75 billion IoT devices connected 

by 2030

►Vulnerabilities in the IoT: weak 

credentials, backdoors, software 

vulnerabilities, poor software 

update policy, etc

►Constantly evolving IoT malware 

landscape: Mirai, Reaper, 

HideNSeek, etc

►IoT botnets are primarily used to 

perform large-scale DDoS attacks.



4Thesis Objectives

►IoT devices perform very specific tasks. The networking behavior is therefore 

very stable and predictable.  well suited for machine/deep learning techniques.

►However, ML/DL algorithms require huge amount of data to be trained on.

This thesis attempts to answer the following question:

- How can deep learning help to monitor IoT networks?

IoT device type recognition system

IoT NIDS

- How can deep learning help to overcome the lack of IoT network traffic data?

Synthetic IoT network traffic data generation



5IoT Device Type Recognition System

Motivation:

►Huge diversity of IoT devices makes it difficult to come up with a specific network 

signature for each device type*. ML algorithms can learn patterns from data.

►Device blacklisting/whitelisting.

►Application of device-specific filtering rules.

►Malicious use of device type recognition: passive network traffic analysis to 

discover vulnerable devices. 

*Device type: a specific model from a specific manufacturer.



6IoT Device Type Recognition System

Network traffic data description:

 Bidirectional TCP flows identified by Src IP, Dest IP, Src Port, Dest Port

 Features used to describe a flow are the size of N packets sent and received, 

and the corresponding inter-arrival times:

 A timeout is used to split long TCP connection into multiple bidirectional flows.



7IoT Device Type Recognition System

Experimental results:

►Traffic collected for 7 days from an experimental smarthome network. N = 10, timeout 

of 600 seconds.

►Six different supervised ML algorithms are tested to classify bidirectional flows: 

Random Forest, Decision Tree, SVM, k-Nearest Neighbors, Artificial Neural Network 

and Gaussian Naïve Bayes.



8IoT NIDS

►Set of anomaly detectors(AD), each trained for a specific device type.



9IoT NIDS

►Autoencoders learn to copy their inputs to their 

outputs under some constraints. 

►An autoencoder is very bad at reconstructing 

outliers. Hence, the reconstruction error RE

can be used to detect anomaly in IoT networks:

►The detection threshold is set so as to have a 

FPR on the validation set FPRVal that is equal 

to FPRdesired.



10IoT NIDS

FPRVal = 0.002 FPRVal = 0.0005



11IoT Network Traffic Generation

►Difficulty to find publicly available IoT network traffic data. Privacy concerns. 

Physically deploying real IoT devices to produce real network traffic data can be 

very costly.

►We aim at generating bidirectional flows represented by a sequence of packet 

sizes and a duration. While generating packet-level features such as the size of 

individual packets, our generator implicitly comply with flow-level features such 

as the ordering of the packets, the total number of packets or bytes per flow, and 

the duration of the flow.

Example:



12IoT Network Traffic Generation

►Generative Adversarial Networks (GAN) are 

special neural network architectures that 

learn to generate realistic looking data. A 

GAN consist of two components: a 

discriminator and a generator. 



13IoT Network Traffic Generation

►Experimental results obtained using network traffic data produced by a Google 

Home Mini.

AE/WGAN-C

AE/WGAN-GP



14Conclusion

Two ML based IoT network monitoring solutions were presented:

►IoT device type recognition system: supervised machine learning algorithms 

were trained to classify bidirectional flows based on the device type they belong 

to. An overall accuracy as high as 99.9% was achieved by the Random Forest 

classifier.

►IoT NIDS: autoencoders were trained to learn the legitimate networking behavior 

profile and to detect any deviation from it. Promising experimental results show 

that our method can achieve high TPR with a reasonable FPR. 

►Synthetic IoT network traffic data generation: Generative Adversarial Networks 

(GANs) were trained to generate sequences of packet sizes and duration 

representing bidirectional flows.
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