
Processing and Training Deep 
Neural Networks on Chip

Ghouthi BOUKLI HACENE, Vincent GRIPON, Nicolas FARRUGIA, 
Matthieu ARZEL, Michel JEZEQUEL, Yoshua BENGIO



Context 2

Processing and Training DNNs on Chip



Context 2

1024 V100 during 1 day for training 4 TPUs during 1 month for training

1T FLOPs for one decision 100M parameters to learn

Processing and Training DNNs on Chip



Challenges 3

Technical Challenges
Real time applications.
Running deep learning on limited resources embedded systems.

1T FLOPs for one decision 100M parameters to learn

Processing and Training DNNs on Chip



Challenges 3

Scientific Challenges
Large architectures harden visualization and interpretation.
Simulation time limits the progress of the field.

4 TPUs during 1 month for training 100M parameters to learn

Processing and Training DNNs on Chip



Challenges 3

Societal Challenges
Large energy consumption.
Accessibility of deep learning to everyone.

1024 V100 during 1 day for training4 TPUs during 1 month for training

Processing and Training DNNs on Chip



1. Deep Learning

•1.1 Deep Learning 

•1.2 Some DNN Architectures

•1.3 Importance of the Architecture

2. Efficient Inference

•2.1 Reducing DNNs Size

•2.2 Compression Methods

•2.3 Quantization

•2.4 Pruning

3. Conclusion

Outline



Deep Learning



Deep Learning 5

A deep learning architecture is basically an assembly of functions.

Each function can be represented by an entity called layer.

Twomost important layers:

Processing and Training DNNs on Chip



Deep Learning 5

A deep learning architecture is basically an assembly of functions.

Each function can be represented by an entity called layer.

Twomost important layers:

Processing and Training DNNs on Chip



Deep Learning 5

A deep learning architecture is basically an assembly of functions.

Each function can be represented by an entity called layer.

Twomost important layers:

Fully connected layer
Input

Output

w1,1

1 2 3

1 2 3 4 5

w3,5

 w1,1 w1,2 w1,3 w1,4 w1,5
w2,1 w2,2 w2,3 w2,4 w2,5
w3,1 w3,2 w3,3 w3,4 w3,5



Processing and Training DNNs on Chip



Deep Learning 5

A deep learning architecture is basically an assembly of functions.

Each function can be represented by an entity called layer.

Twomost important layers:

Convolutional layer
Input

Output

 w1 w2 w3 0 0
0 w1 w2 w3 0
0 0 w1 w2 w3


 w4 w5 w6 0 0

0 w4 w5 w6 0
0 0 w4 w5 w6


 w7 w8 w9 0 0

0 w7 w8 w9 0
0 0 w7 w8 w9



Processing and Training DNNs on Chip



Some DNN Architectures 6

AlexNet-like Network
Input

Layer 1

Layer 2

Layer 3

Output

Residual-like Network
Input

Layer 1

Layer 2

Addition

Layer 3

Output

Processing and Training DNNs on Chip



Some DNN Architectures 6

AlexNet-like Network
Input

Layer 1

Layer 2

Layer 3

Output

Residual-like Network
Input

Layer 1

Layer 2

Addition

Layer 3

Output

Processing and Training DNNs on Chip



Importance of the architecture: memory 7

Memory vs. Top-1 error for models trained on 2012 ILSVRC

0 100 200 300 400 500 600 700 800

20

25

30

35

40

45
alexnet
ca�enetsqueezenet1-0squeezenet1-1 vgg-f

vgg-mvgg-svgg-m-2048vgg-m-1024

vgg-m-128

vgg-vd-16vgg-vd-19

googlenet

resnet18

resnet34

resnet-50
resnet-101 resnet-152resnext-50-32x4d
resnext-101-32x4d

resnext-101-64x4d

inception-v3SE-ResNet-50 SE-ResNet-101SE-ResNet-152SE-ResNeXt-50-32x4d
SE-ResNeXt-101-32x4d

SENet

SE-BN-Inception
densenet121

densenet161
densenet169

densenet201

mcn-mobilenet

Memory (MB)

To
p-
1
er
ro
r(
%
)

Processing and Training DNNs on Chip



Importance of the architecture: memory 7

Memory vs. Top-1 error for models trained on 2012 ILSVRC

0 100 200 300 400 500 600 700 800

20

25

30

35

40

45
alexnet
ca�enetsqueezenet1-0squeezenet1-1 vgg-f

vgg-mvgg-svgg-m-2048vgg-m-1024

vgg-m-128

vgg-vd-16vgg-vd-19

googlenet

resnet18

resnet34

resnet-50
resnet-101 resnet-152resnext-50-32x4d
resnext-101-32x4d

resnext-101-64x4d

inception-v3SE-ResNet-50 SE-ResNet-101SE-ResNet-152SE-ResNeXt-50-32x4d
SE-ResNeXt-101-32x4d

SENet

SE-BN-Inception
densenet121

densenet161
densenet169

densenet201

mcn-mobilenet

Memory (MB)

To
p-
1
er
ro
r(
%
)

Processing and Training DNNs on Chip



Importance of the architecture: FLOPs 8

FLOPs vs. Top-1 error for models trained on 2012 ILSVRC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
·104

20

25

30

35

40

45
alexnet
ca�enetsqueezenet1-0squeezenet1-1vgg-f

vgg-mvgg-svgg-m-2048vgg-m-1024

vgg-m-128

vgg-vd-16 vgg-vd-19

googlenet

resnet18

resnet34

resnet-50
resnet-101 resnet-152resnext-50-32x4d

resnext-101-32x4d
resnext-101-64x4d

inception-v3SE-ResNet-50 SE-ResNet-101SE-ResNet-152SE-ResNeXt-50-32x4d
SE-ResNeXt-101-32x4d

SENet

SE-BN-Inception
densenet121

densenet161
densenet169

densenet201

mcn-mobilenet

MFLOPs

To
p-
1
er
ro
r(
%
)

Processing and Training DNNs on Chip



Importance of the architecture: FLOPs 8

FLOPs vs. Top-1 error for models trained on 2012 ILSVRC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
·104

20

25

30

35

40

45
alexnet
ca�enetsqueezenet1-0squeezenet1-1vgg-f

vgg-mvgg-svgg-m-2048vgg-m-1024

vgg-m-128

vgg-vd-16 vgg-vd-19

googlenet

resnet18

resnet34

resnet-50
resnet-101 resnet-152resnext-50-32x4d

resnext-101-32x4d
resnext-101-64x4d

inception-v3SE-ResNet-50 SE-ResNet-101SE-ResNet-152SE-ResNeXt-50-32x4d
SE-ResNeXt-101-32x4d

SENet

SE-BN-Inception
densenet121

densenet161
densenet169

densenet201

mcn-mobilenet

MFLOPs

To
p-
1
er
ro
r(
%
)

Processing and Training DNNs on Chip



Efficient Inference



Reducing DNNs size (CIFAR100) 9

50 100 150 200

65

70

75

80

Memory (MB)

Te
st
se
ta
cc
ur
ac
y
(%
)

VGG19
MobileNetV2
Resnet34
Densenet121

Memory vs accuracy.

0 1 2 3

65

70

75

80

GFLOPs

Te
st
se
ta
cc
ur
ac
y
(%
)

VGG19
MobileNetV2
Resnet34
Densenet121

FLOPs vs accuracy.

Processing and Training DNNs on Chip



Reducing DNNs size (CIFAR100) 9

50 100 150 200

65

70

75

80

Memory (MB)

Te
st
se
ta
cc
ur
ac
y
(%
)

VGG19
MobileNetV2
Resnet34
Densenet121

Memory vs accuracy.

0 1 2 3

65

70

75

80

GFLOPs

Te
st
se
ta
cc
ur
ac
y
(%
)

VGG19
MobileNetV2
Resnet34
Densenet121

FLOPs vs accuracy.

Scaling down proportionally the number of feature maps of each layer.

Processing and Training DNNs on Chip



Compression Methods 10

Layer 1 Layer 2

0.478 0.314 0.231 1.231 −0.423

−1.987 1.332 0.977 −0.541 1.230

0.322 0.431 0.221 0.112 −0.445

−0.718 0.891 −0.231−1.231−0.331

−1.412 0.490 0.791 0.901 −1.002

0.528 0.710 0.730 0.231 −1.423

−1.087 0.132 1.797 −1.041 1.131

1.220 0.321 0.341 1.912 −1.445

−0.798 1.291 1.481 −0.871−0.821

1.772 −0.484 0.179 −0.121−1.921

Baseline

Processing and Training DNNs on Chip



Compression Methods 10

Layer 1 Layer 2

0.478 0.314 0.231 1.231 −0.423

−1.987 1.332 0.977 −0.541 1.230

0.322 0.431 0.221 0.112 −0.445

−0.718 0.891 −0.231−1.231−0.331

−1.412 0.490 0.791 0.901 −1.002

0.528 0.710 0.730 0.231 −1.423

−1.087 0.132 1.797 −1.041 1.131

1.220 0.321 0.341 1.912 −1.445

−0.798 1.291 1.481 −0.871−0.821

1.772 −0.484 0.179 −0.121−1.921

Baseline

Processing and Training DNNs on Chip



Compression Methods 10

Layer 1 Layer 2

0.5 0.3 0.2 1.2 −0.4

−2.0 1.3 1.0 −0.5 1.2

0.3 0.4 0.2 0.1 −0.4

−0.7 0.9 −0.2 −1.2 −0.3

−1.4 0.5 0.8 0.9 −1.0

0.5 0.7 0.7 0.2 −1.4

−1.1 0.1 1.8 −1.0 1.1

1.2 0.3 0.3 1.9 −1.4

−0.8 1.3 1.5 −0.9 −0.8

1.8 −0.5 0.2 −0.1 −1.9

Quantization

Processing and Training DNNs on Chip



HowMany Bits DoWe Need? 11

5 10 15 20 25 30

20

40

60

80

100

values precision (in bits)

Te
st
se
ta
cc
ur
ac
y
(%
)

Resnet18
PreActResnet18
SeNet18
MobileNetV2

Weights only (CIFAR10).

5 10 15 20 25 30

20

40

60

80

100

values precision (in bits)

Te
st
se
ta
cc
ur
ac
y
(%
)

Resnet18
PreActResnet18
SeNet18
MobileNetV2

Weights and activations (CIFAR10).

Processing and Training DNNs on Chip



Binary Connect (BC) 12

BC straight through principle:

1 Map weight values to their signs (1 or−1).

2 Compute feed forward and back propagation.

3 Update initial floating point values.

BinaryWeight Network (BWN) outperforms BC by adding a
scaling factor (−α or α).
Comparison of accuracy between baseline, BC and BWN on CIFAR10.

Resnet34 Densenet121 MobilenetV2
Full-precision 95.0% 95.0% 93.8%
BC 93.6% 94.5% 93.0%
BWN 94.3% 94.7% 93.4%

Processing and Training DNNs on Chip



Binary Connect (BC) 12

BC straight through principle:

1 Map weight values to their signs (1 or−1).

2 Compute feed forward and back propagation.

3 Update initial floating point values.

BinaryWeight Network (BWN) outperforms BC by adding a
scaling factor (−α or α).
Comparison of accuracy between baseline, BC and BWN on CIFAR10.

Resnet34 Densenet121 MobilenetV2
Full-precision 95.0% 95.0% 93.8%
BC 93.6% 94.5% 93.0%
BWN 94.3% 94.7% 93.4%

Processing and Training DNNs on Chip



Binary Connect (BC) 12

BC straight through principle:

1 Map weight values to their signs (1 or−1).

2 Compute feed forward and back propagation.

3 Update initial floating point values.

BinaryWeight Network (BWN) outperforms BC by adding a
scaling factor (−α or α).
Comparison of accuracy between baseline, BC and BWN on CIFAR10.

Resnet34 Densenet121 MobilenetV2
Full-precision 95.0% 95.0% 93.8%
BC 93.6% 94.5% 93.0%
BWN 94.3% 94.7% 93.4%

Processing and Training DNNs on Chip



Binary Connect (BC) 12

BC straight through principle:

1 Map weight values to their signs (1 or−1).

2 Compute feed forward and back propagation.

3 Update initial floating point values.

BinaryWeight Network (BWN) outperforms BC by adding a
scaling factor (−α or α).
Comparison of accuracy between baseline, BC and BWN on CIFAR10.

Resnet34 Densenet121 MobilenetV2
Full-precision 95.0% 95.0% 93.8%
BC 93.6% 94.5% 93.0%
BWN 94.3% 94.7% 93.4%

Processing and Training DNNs on Chip



Binary Connect (BC) 12

BC straight through principle:

1 Map weight values to their signs (1 or−1).

2 Compute feed forward and back propagation.

3 Update initial floating point values.

BinaryWeight Network (BWN) outperforms BC by adding a
scaling factor (−α or α).

Comparison of accuracy between baseline, BC and BWN on CIFAR10.

Resnet34 Densenet121 MobilenetV2
Full-precision 95.0% 95.0% 93.8%
BC 93.6% 94.5% 93.0%
BWN 94.3% 94.7% 93.4%

Processing and Training DNNs on Chip



Binary Connect (BC) 12

BC straight through principle:

1 Map weight values to their signs (1 or−1).

2 Compute feed forward and back propagation.

3 Update initial floating point values.

BinaryWeight Network (BWN) outperforms BC by adding a
scaling factor (−α or α).
Comparison of accuracy between baseline, BC and BWN on CIFAR10.

Resnet34 Densenet121 MobilenetV2
Full-precision 95.0% 95.0% 93.8%
BC 93.6% 94.5% 93.0%
BWN 94.3% 94.7% 93.4%

Processing and Training DNNs on Chip



Compression Methods 13

Layer 1 Layer 2
w11 w12 w13 w14 w15

w16 w17 w18 w19 w110

w111 w112 w113 w114 w115

w116 w117 w118 w119 w120

w121 w122 w123 w124 w125

w21 w22 w23 w24 w25

w26 w27 w28 w29 w210

w211 w212 w213 w214 w215

w216 w217 w218 w219 w220

w221 w222 w223 w224 w225

Baseline

Processing and Training DNNs on Chip



Compression Methods 13

Layer 1 Layer 2
0 w12 0 w14 w15

0 0 w18 w19 w110

w111 0 w113 w114 0

w116 w117 0 w119 0

w121 w122 0 w124 w125

0 0 0 0 0

w26 w27 w28 w29 w210

w211 w212 w213 w214 w215

0 0 0 0 0

w221 w222 w223 w224 w225

StructuredNon structured
Pruning

Processing and Training DNNs on Chip



Pruning 14

Evaluate the importance of neurons and eliminate the least
important ones to reduce neural network size.

Non structured pruning: eliminate neurons independently, only
exploitable for very large levels of sparsity.

Structured pruning: eliminate kernels, filters or even layers,
exploitable for even low levels of sparsity.

Processing and Training DNNs on Chip



Pruning 14

Evaluate the importance of neurons and eliminate the least
important ones to reduce neural network size.

Non structured pruning: eliminate neurons independently, only
exploitable for very large levels of sparsity.

Structured pruning: eliminate kernels, filters or even layers,
exploitable for even low levels of sparsity.

Processing and Training DNNs on Chip



Pruning 14

Evaluate the importance of neurons and eliminate the least
important ones to reduce neural network size.

Non structured pruning: eliminate neurons independently, only
exploitable for very large levels of sparsity.

Structured pruning: eliminate kernels, filters or even layers,
exploitable for even low levels of sparsity.

Processing and Training DNNs on Chip



Structured pruning and shift layers 15

L

C

S

X Yd

L

C

S

X Yd

L

Shifted X Yd

C

Shift Attention Layer (SAL)
Simplified operations,
Reduced number of parameters,
Fully exploitable technique.

Processing and Training DNNs on Chip



Structured pruning and shift layers 15

L

C

S

X Yd

L

C

S

X Yd

L

Shifted X Yd

C

Shift Attention Layer (SAL)
Simplified operations,
Reduced number of parameters,
Fully exploitable technique.

Processing and Training DNNs on Chip



Experimental Results 16

Comparison of accuracy, number of parameters and number of floating point
operations (FLOPs) using ResNet architectures.

Method CIFAR10 CIFAR100
Accuracy NP (M) MFLOPs Accuracy NP (M) MFLOPs

Pruned-B 93.06% 0.73 91 73.6% 7.83 616
NISP 93.01% 0.49 71 − − −
PCAS 93.58% 0.39 56 73.84% 4.02 475
SAL 93.6% 0.36 42 77.6% 3.9 251

Processing and Training DNNs on Chip



Quantized Shift Layers 17

Shift Layers + BC or BWN
Shift layer: replace a convolution by a multiplication.
BC/BWN: replace a multiplication by a low-cost multiplexer.
Shift layer +BC/BWN: replace a convolution by a low-cost
multiplexer.

Comparison of accuracy and memory usage between Resnet-20 baseline,
SAL, SAL with BC and SAL with BWN on CIFAR10.

Accuracy(%) Memory(Mb)
Baseline 94.66 39.04
SAL 95.52 31.36
SAL + BC 93.20 6.87
SAL + BWN 94.00 6.87

Processing and Training DNNs on Chip



Quantized Shift Layers 17

Shift Layers + BC or BWN
Shift layer: replace a convolution by a multiplication.
BC/BWN: replace a multiplication by a low-cost multiplexer.
Shift layer +BC/BWN: replace a convolution by a low-cost
multiplexer.

Comparison of accuracy and memory usage between Resnet-20 baseline,
SAL, SAL with BC and SAL with BWN on CIFAR10.

Accuracy(%) Memory(Mb)
Baseline 94.66 39.04
SAL 95.52 31.36
SAL + BC 93.20 6.87
SAL + BWN 94.00 6.87

Processing and Training DNNs on Chip



Comparison of Methods 18

0 0.2 0.4 0.6 0.8 1
90

92

94

96

Memory footprint

Te
st
se
ta
cc
ur
ac
y
(%
)

MobileNetV2

Evolution of accuracy when applying compression methods on di�erent DNN
architectures for the CIFAR10 dataset.

Processing and Training DNNs on Chip



Comparison of Methods 18

0 0.2 0.4 0.6 0.8 1
90

92

94

96

Memory footprint

Te
st
se
ta
cc
ur
ac
y
(%
)

MobileNetV2
SqueezeNet

Evolution of accuracy when applying compression methods on di�erent DNN
architectures for the CIFAR10 dataset.

Processing and Training DNNs on Chip



Comparison of Methods 18

0 0.2 0.4 0.6 0.8 1
90

92

94

96

Memory footprint

Te
st
se
ta
cc
ur
ac
y
(%
)

MobileNetV2
SqueezeNet
Resnet18

Evolution of accuracy when applying compression methods on di�erent DNN
architectures for the CIFAR10 dataset.

Processing and Training DNNs on Chip



Comparison of Methods 18

0 0.2 0.4 0.6 0.8 1
90

92

94

96

Memory footprint

Te
st
se
ta
cc
ur
ac
y
(%
)

MobileNetV2
SqueezeNet
Resnet18
Resnet18+BC
Resnet18+BWN

Evolution of accuracy when applying compression methods on di�erent DNN
architectures for the CIFAR10 dataset.

Processing and Training DNNs on Chip



Comparison of Methods 18

0 0.2 0.4 0.6 0.8 1
90

92

94

96

Memory footprint

Te
st
se
ta
cc
ur
ac
y
(%
)

MobileNetV2
SqueezeNet
Resnet18
Resnet18+BC
Resnet18+BWN
Resnet18+SAL

Evolution of accuracy when applying compression methods on di�erent DNN
architectures for the CIFAR10 dataset.

Processing and Training DNNs on Chip



Conclusion



Conclusion 19

Compression Methods
Di�erent ways to reduce DNNs size, complexity and thus energy
consumption.
Compression methods are only applicable to the inference part,
and not the learning part.

Directions
Which combinations of quantization methods are e�cient?
Can training process decide the most e�cient number of bits to
quantize values?
Can SAL perform well in other domains than classification?
Can compression methods be reconsidered to reduce training
complexity?

Processing and Training DNNs on Chip



Conclusion 19

Compression Methods
Di�erent ways to reduce DNNs size, complexity and thus energy
consumption.
Compression methods are only applicable to the inference part,
and not the learning part.

Directions
Which combinations of quantization methods are e�cient?
Can training process decide the most e�cient number of bits to
quantize values?
Can SAL perform well in other domains than classification?
Can compression methods be reconsidered to reduce training
complexity?

Processing and Training DNNs on Chip


	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	Slide 1

	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	Context and Challenges

	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	Slide 2
	Slide 3

	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	Slide 4

	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf
	Slide 5

	f05eaa30cba787dd37bf2058e73fef3cdd960a92da81ab3d6d6a6702d650135a.pdf

