

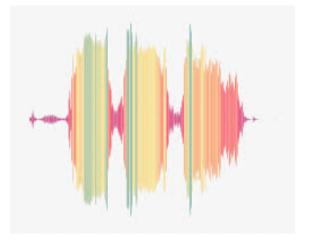
Processing and Training Deep Neural Networks on Chip

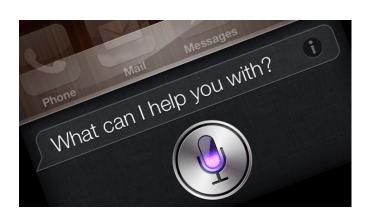
Ghouthi BOUKLI HACENE, Vincent GRIPON, Nicolas FARRUGIA, Matthieu ARZEL, Michel JEZEQUEL, Yoshua BENGIO

IMT Mines Alè

Une école de l'IMT Une école de l'IMT

Context

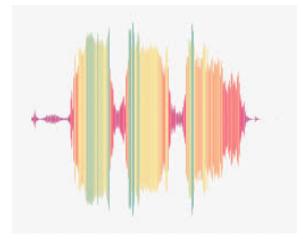




Context

1T FLOPs for one decision

1024 V100 during 1 day for training



100M parameters to learn

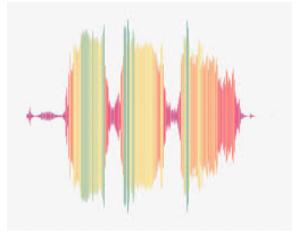
4 TPUs during 1 month for training

Challenges

Technical Challenges

- Real time applications.
- Running deep learning on limited resources embedded systems.

1T FLOPs for one decision



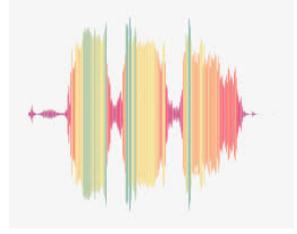
100M parameters to learn

Challenges

Scientific Challenges

- Large architectures harden visualization and interpretation.
- Simulation time limits the progress of the field.

4 TPUs during 1 month for training



100M parameters to learn

Challenges

Societal Challenges

- Large energy consumption.
- Accessibility of deep learning to everyone.

4 TPUs during 1 month for training 1024 V100 during 1 day for training

Outline

1. Deep Learning

- •1.1 Deep Learning
- •1.2 Some DNN Architectures
- •1.3 Importance of the Architecture

2. Efficient Inference

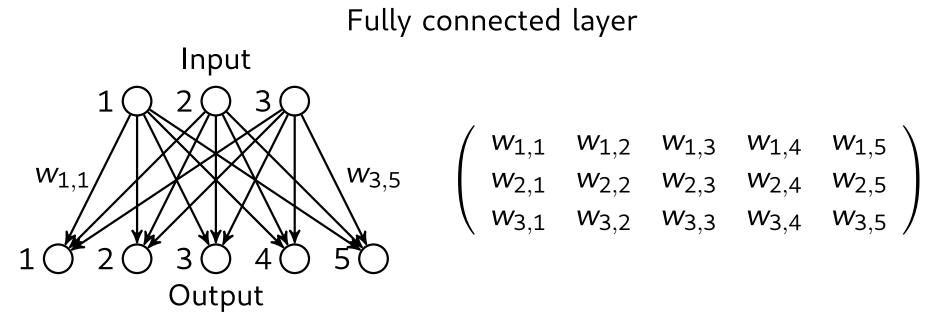
- •2.1 Reducing DNNs Size
- •2.2 Compression Methods
- 2.3 Quantization
- •2.4 Pruning
- **3. Conclusion**

A deep learning architecture is basically an assembly of functions.

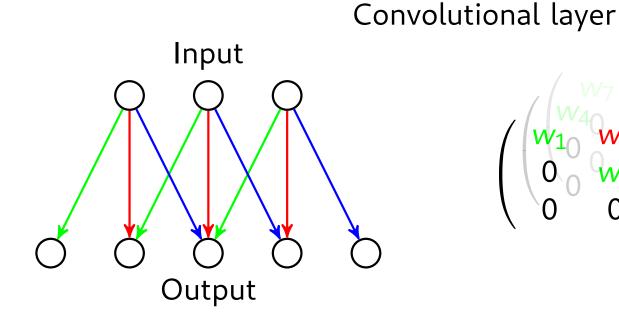
- Each function can be represented by an entity called layer.
- Two most important layers:

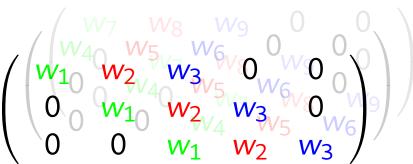
- A deep learning architecture is basically an assembly of functions.
- Each function can be represented by an entity called layer.
- Two most important layers:

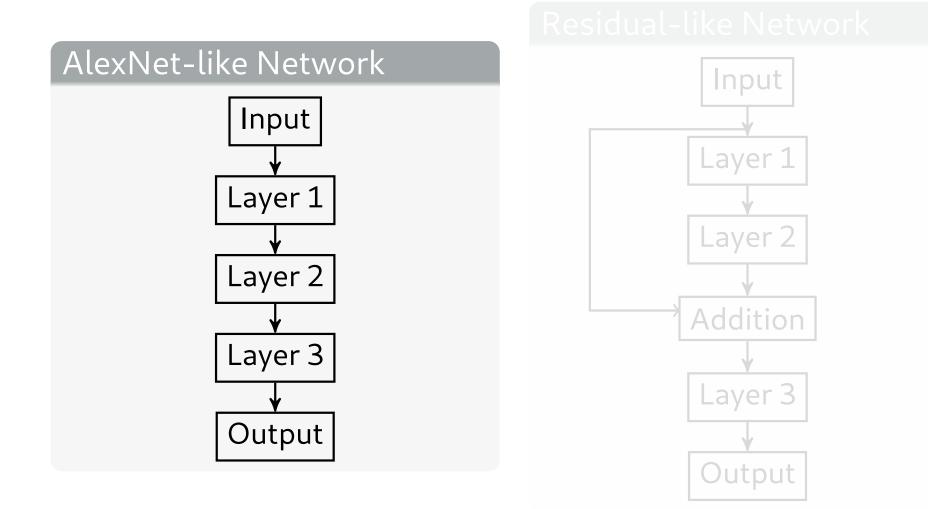
- A deep learning architecture is basically an assembly of functions.
- Each function can be represented by an entity called layer.
- Two most important layers:

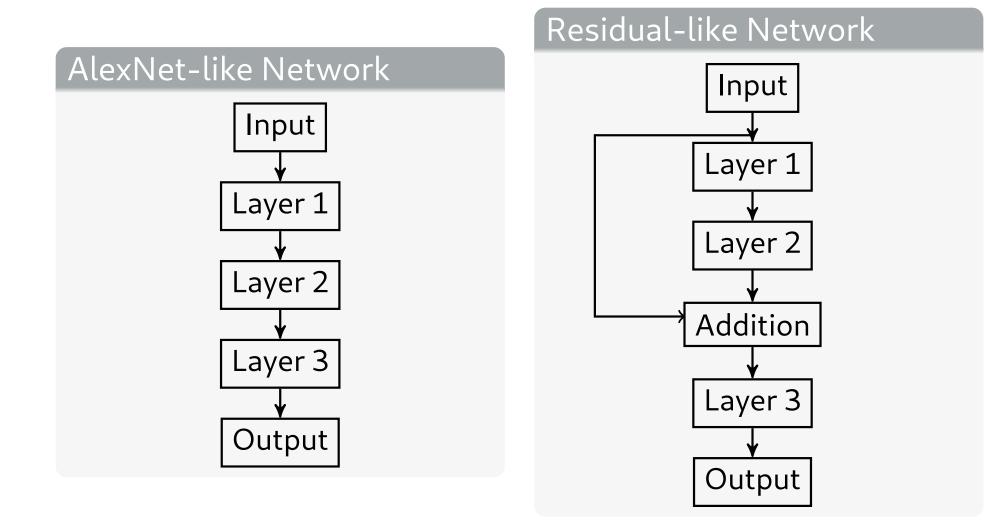


- A deep learning architecture is basically an assembly of functions.
- Each function can be represented by an entity called layer.
- Two most important layers:

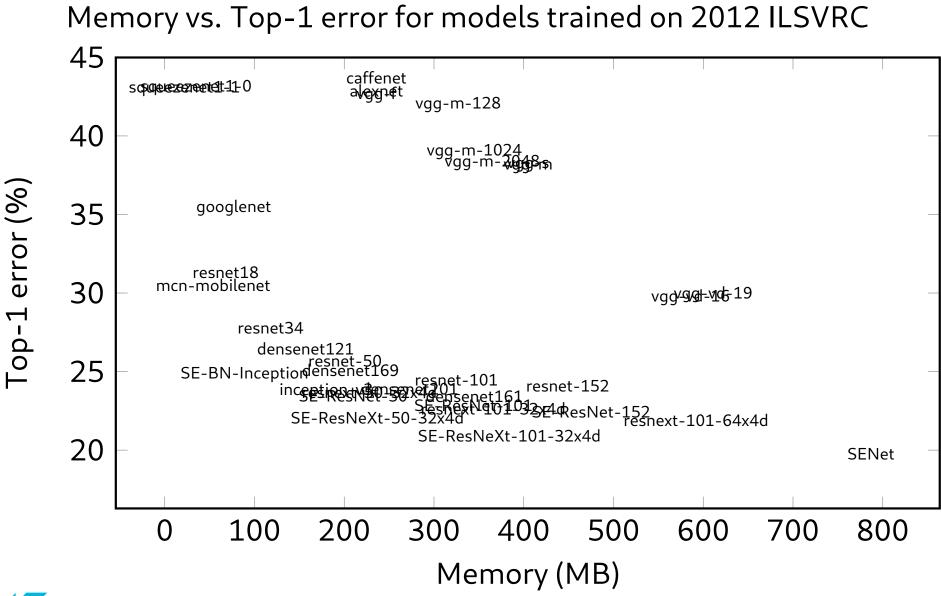






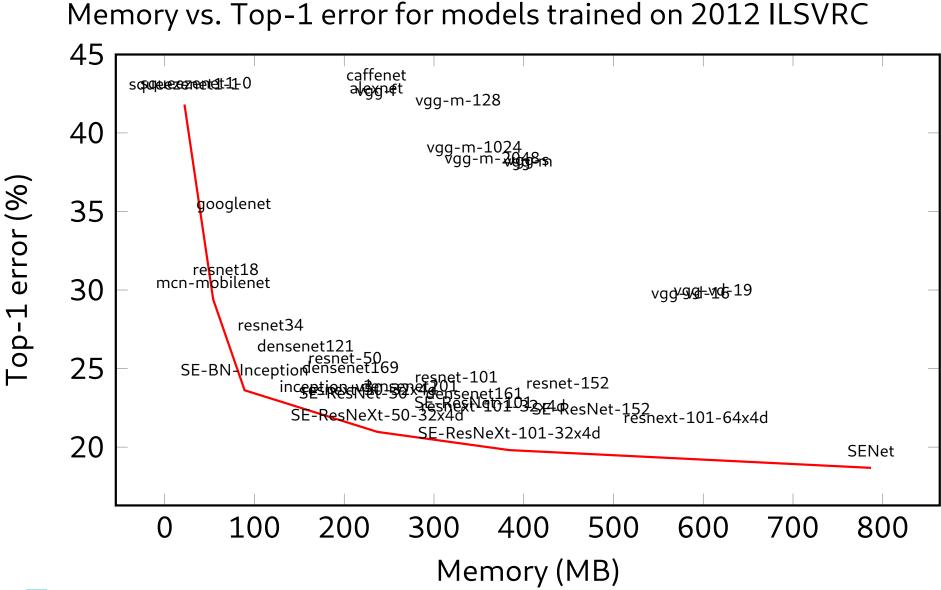


Importance of the architecture: memory



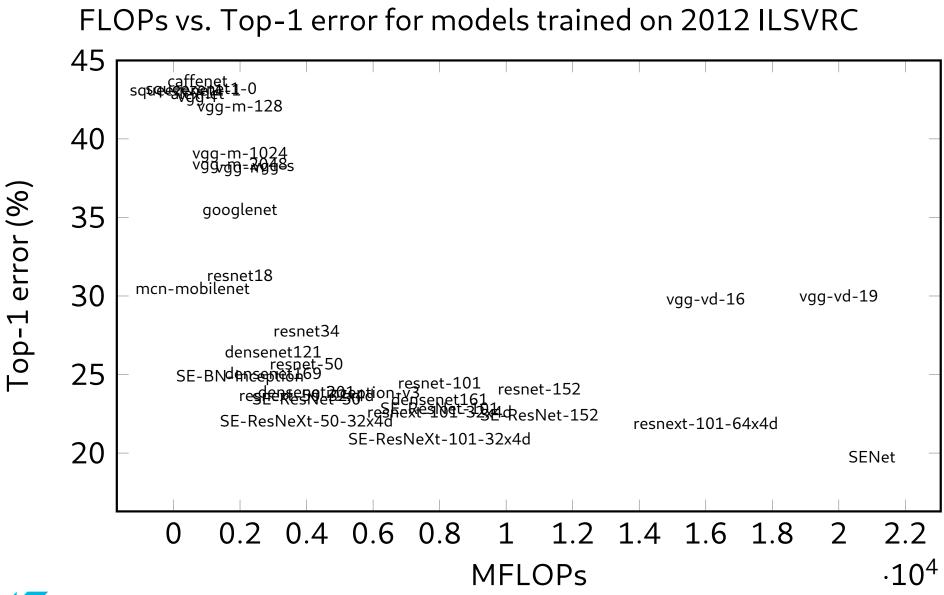
Processing and Training DNNs on Chip

Importance of the architecture: memory

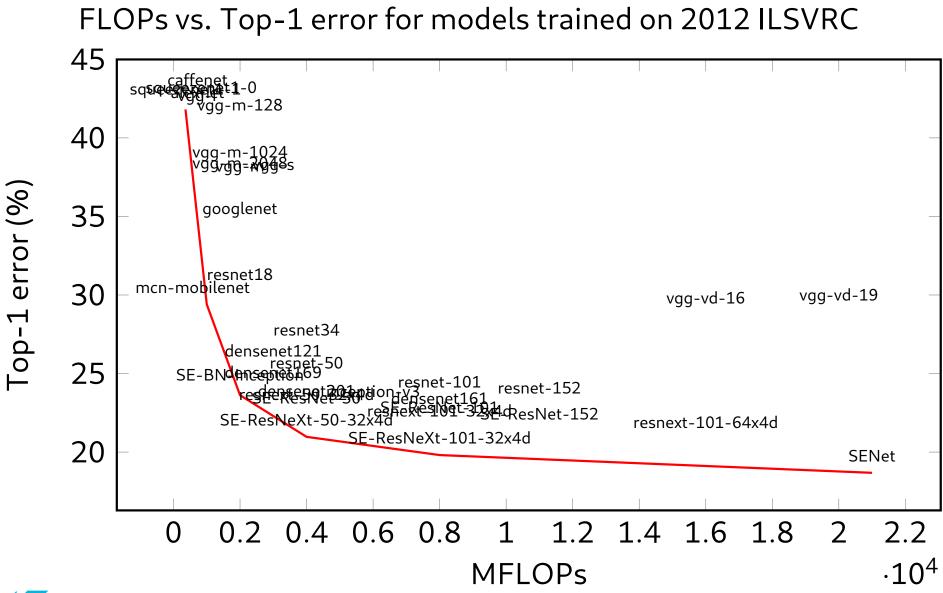


Processing and Training DNNs on Chip

Importance of the architecture: FLOPs



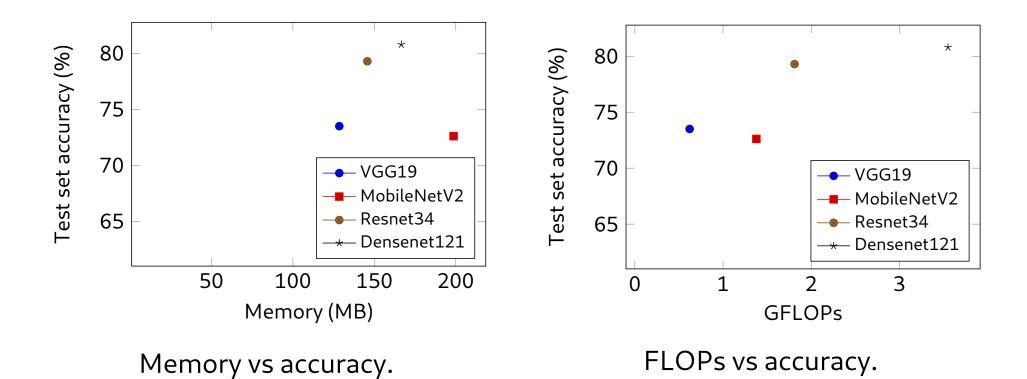
Importance of the architecture: FLOPs



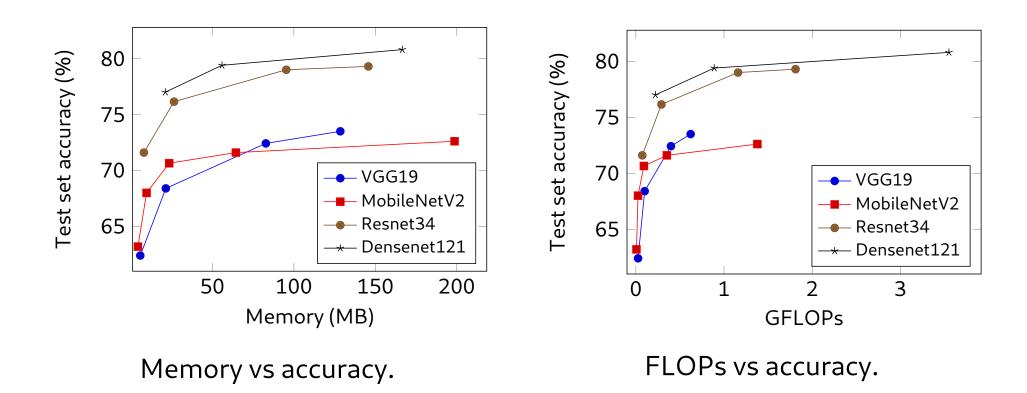
Processing and Training DNNs on Chip

Efficient Inference

Reducing DNNs size (CIFAR100)



Reducing DNNs size (CIFAR100)



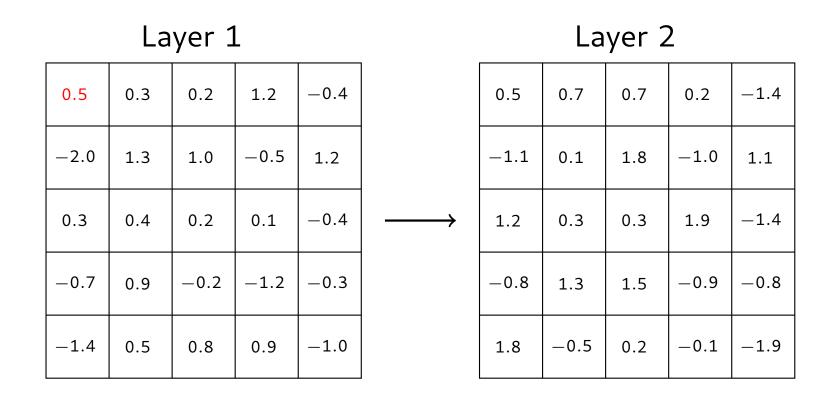
Scaling down proportionally the number of feature maps of each layer.

Layer 1					Layer 2					
0.478	0.314	0.231	1.231	-0.423		0.528	0.710	0.730	0.231	-1.423
-1.987	1.332	0.977	-0.541	1.230		-1.087	0.132	1.797	-1.041	1.131
0.322	0.431	0.221	0.112	-0.445	\longrightarrow	1.220	0.321	0.341	1.912	-1.445
-0.718	0.891	-0.231	-1.231	-0.331		-0.798	1.291	1.481	-0.871	-0.821
-1.412	0.490	0.791	0.901	-1.002		1.772	-0.484	0.179	-0.121	-1.921

Baseline

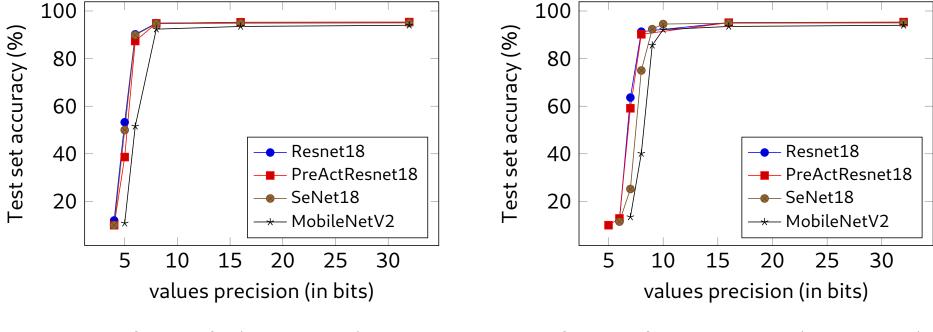
Layer 1					Layer 2					
0.478	0.314	0.231	1.231	-0.423		0.528	0.710	0.730	0.231	-1.423
-1.987	1.332	0.977	-0.541	1.230		-1.087	0.132	1.797	-1.041	1.131
0.322	0.431	0.221	0.112	-0.445	\longrightarrow	1.220	0.321	0.341	1.912	-1.445
-0.718	0.891	-0.231	-1.231	-0.331		-0.798	1.291	1.481	-0.871	-0.821
-1.412	0.490	0.791	0.901	-1.002		1.772	-0.484	0.179	-0.121	-1.921

Baseline



Quantization

How Many Bits Do We Need?



Weights only (CIFAR10).

Weights and activations (CIFAR10).

BC straight through principle:

BC straight through principle:

1 Map weight values to their signs (1 or -1).

- BC straight through principle:
 - 1 Map weight values to their signs (1 or -1).
 - Compute feed forward and back propagation.

- BC straight through principle:
 - 1 Map weight values to their signs (1 or -1).
 - Compute feed forward and back propagation.
 - 3 Update initial floating point values.

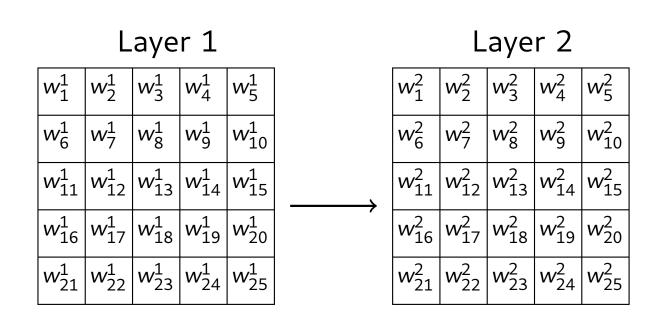
BC straight through principle:

- 1 Map weight values to their signs (1 or -1).
- 2 Compute feed forward and back propagation.
- 3 Update initial floating point values.
- Binary Weight Network (BWN) outperforms BC by adding a scaling factor ($-\alpha$ or α).

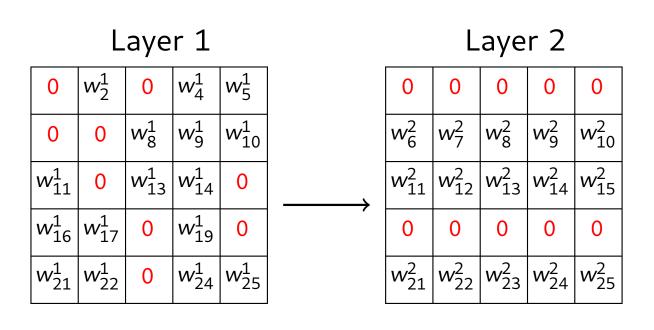
BC straight through principle:

- 1 Map weight values to their signs (1 or -1).
- 2 Compute feed forward and back propagation.
- Update initial floating point values.
- Binary Weight Network (BWN) outperforms BC by adding a scaling factor ($-\alpha$ or α).
- Comparison of accuracy between baseline, BC and BWN on CIFAR10.

	Resnet34	Densenet121	MobilenetV2
Full-precision	95.0%	95.0%	93.8%
BC	93.6%	94.5%	93.0%
BWN	94.3%	94.7%	93.4%



Baseline



Non structured

Structured

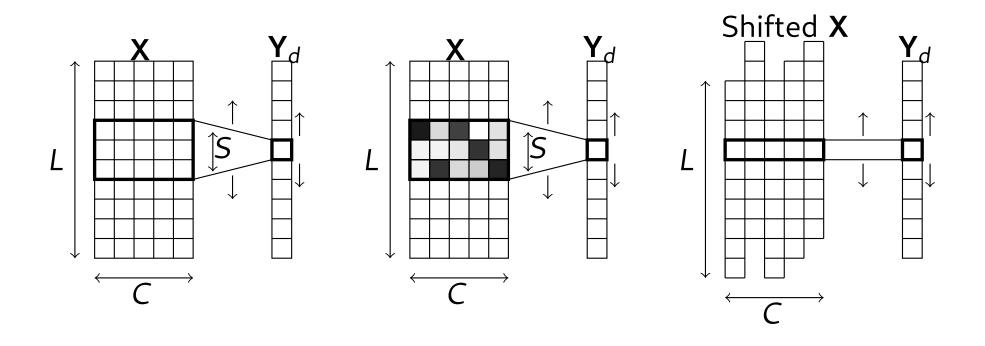
Pruning

Evaluate the importance of neurons and eliminate the least important ones to reduce neural network size.

- Evaluate the importance of neurons and eliminate the least important ones to reduce neural network size.
- Non structured pruning: eliminate neurons independently, only exploitable for very large levels of sparsity.

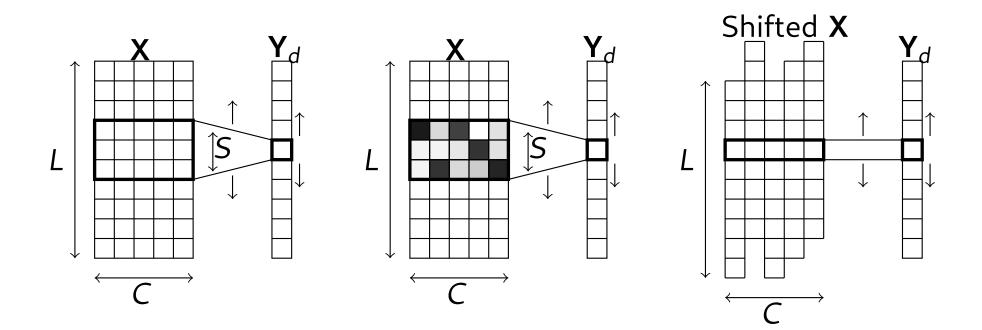
- Evaluate the importance of neurons and eliminate the least important ones to reduce neural network size.
- Non structured pruning: eliminate neurons independently, only exploitable for very large levels of sparsity.
- Structured pruning: eliminate kernels, filters or even layers, exploitable for even low levels of sparsity.

Structured pruning and shift layers



Processing and Training DNNs on Chip

Structured pruning and shift layers



Shift Attention Layer (SAL)

- Simplified operations,
- Reduced number of parameters,
- Fully exploitable technique.

Comparison of accuracy, number of parameters and number of floating point operations (FLOPs) using ResNet architectures.

Method	CIFAR10			CIFAR100		
	Accuracy	NP (M)	MFLOPs	Accuracy	NP (M)	MFLOPs
Pruned-B	93.06%	0.73	91	73.6%	7.83	616
NISP	93.01%	0.49	71	_	_	—
PCAS	93.58%	0.39	56	73.84%	4.02	475
SAL	93.6%	0.36	42	77.6%	3.9	251

Shift Layers + BC or BWN

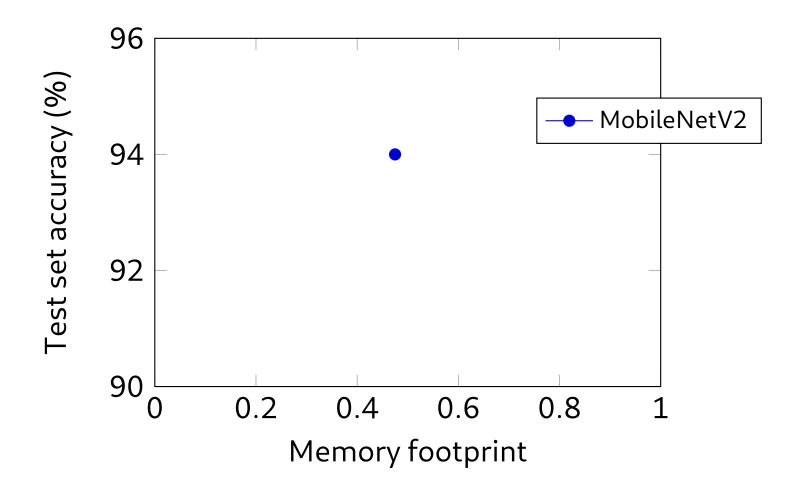
- **Shift layer**: replace a convolution by a multiplication.
- **BC/BWN**: replace a multiplication by a low-cost multiplexer.
- Shift layer +BC/BWN: replace a convolution by a low-cost multiplexer.

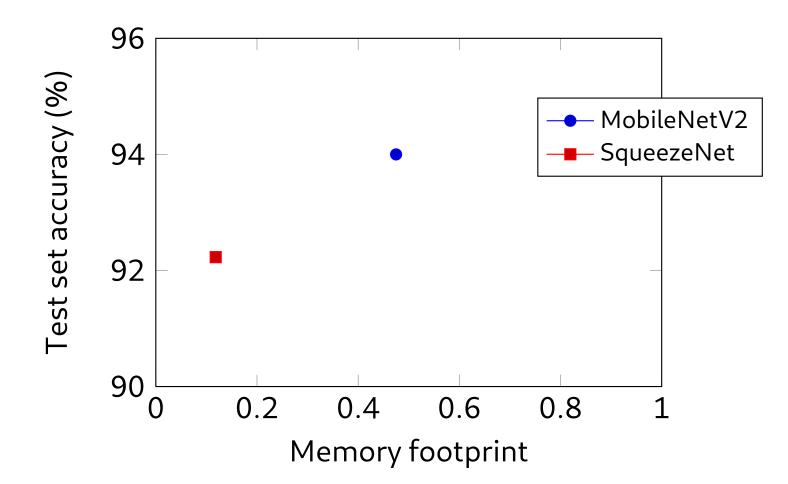
Shift Layers + BC or BWN

- **Shift layer**: replace a convolution by a multiplication.
- **BC/BWN**: replace a multiplication by a low-cost multiplexer.
- Shift layer +BC/BWN: replace a convolution by a low-cost multiplexer.

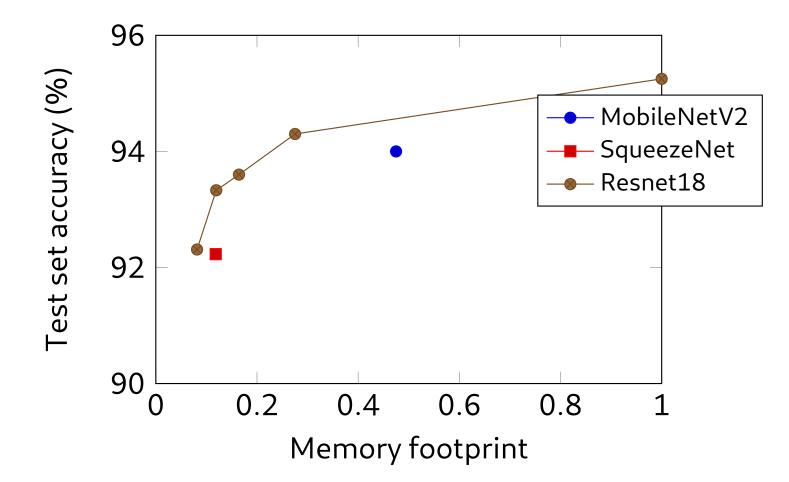
Comparison of accuracy and memory usage between Resnet-20 baseline, SAL, SAL with BC and SAL with BWN on CIFAR10.

	Accuracy(%)	Memory(Mb)	
Baseline	94.66	39.04	
SAL	95.52	31.36	
SAL + BC	93.20	6.87	
SAL + BWN	94.00	6.87	

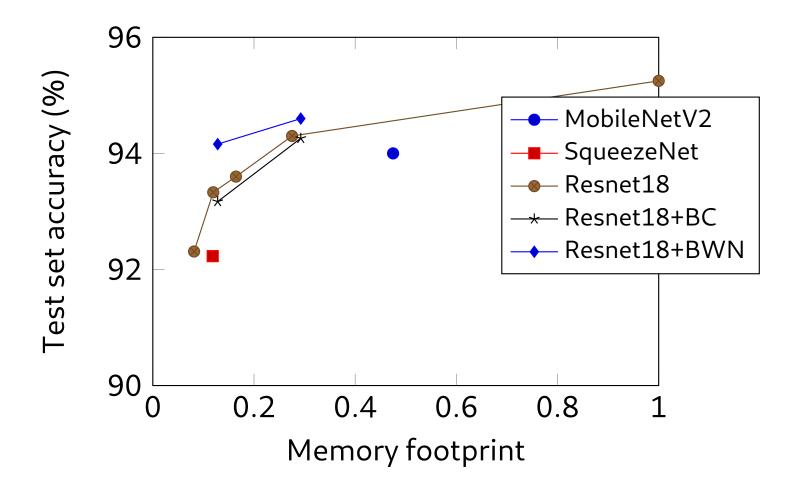




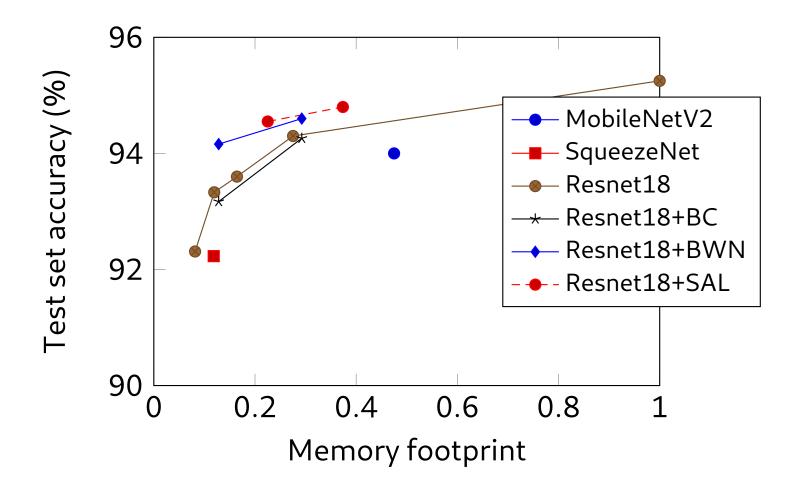
Comparison of Methods



Comparison of Methods



Comparison of Methods



Conclusion

Conclusion

Compression Methods

- Different ways to reduce DNNs size, complexity and thus energy consumption.
- Compression methods are only applicable to the inference part, and not the learning part.

Conclusion

Compression Methods

- Different ways to reduce DNNs size, complexity and thus energy consumption.
- Compression methods are only applicable to the inference part, and not the learning part.

Directions

- Which combinations of quantization methods are efficient?
- Can training process decide the most efficient number of bits to quantize values?
- Can SAL perform well in other domains than classification?
- Can compression methods be reconsidered to reduce training complexity?

