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1024 V100 during 1 day for training 4 TPUs during 1 month for training

1T FLOPs for one decision 100M parameters to learn
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Challenges 3

Technical Challenges
Real time applications.
Running deep learning on limited resources embedded systems.

1T FLOPs for one decision 100M parameters to learn
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Challenges 3

Scientific Challenges
Large architectures harden visualization and interpretation.
Simulation time limits the progress of the field.

4 TPUs during 1 month for training 100M parameters to learn
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Challenges 3

Societal Challenges
Large energy consumption.
Accessibility of deep learning to everyone.

1024 V100 during 1 day for training4 TPUs during 1 month for training
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Deep Learning 5

A deep learning architecture is basically an assembly of functions.

Each function can be represented by an entity called layer.

Twomost important layers:
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Deep Learning 5

A deep learning architecture is basically an assembly of functions.

Each function can be represented by an entity called layer.

Twomost important layers:

Fully connected layer
Input

Output

w1,1

1 2 3

1 2 3 4 5

w3,5

 w1,1 w1,2 w1,3 w1,4 w1,5
w2,1 w2,2 w2,3 w2,4 w2,5
w3,1 w3,2 w3,3 w3,4 w3,5


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Deep Learning 5

A deep learning architecture is basically an assembly of functions.

Each function can be represented by an entity called layer.

Twomost important layers:

Convolutional layer
Input

Output

 w1 w2 w3 0 0
0 w1 w2 w3 0
0 0 w1 w2 w3


 w4 w5 w6 0 0

0 w4 w5 w6 0
0 0 w4 w5 w6


 w7 w8 w9 0 0

0 w7 w8 w9 0
0 0 w7 w8 w9


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Some DNN Architectures 6

AlexNet-like Network
Input

Layer 1

Layer 2

Layer 3

Output

Residual-like Network
Input

Layer 1

Layer 2

Addition

Layer 3

Output
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Importance of the architecture: memory 7

Memory vs. Top-1 error for models trained on 2012 ILSVRC
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Importance of the architecture: FLOPs 8

FLOPs vs. Top-1 error for models trained on 2012 ILSVRC
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Efficient Inference



Reducing DNNs size (CIFAR100) 9
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Scaling down proportionally the number of feature maps of each layer.
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Compression Methods 10

Layer 1 Layer 2
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−0.798 1.291 1.481 −0.871−0.821

1.772 −0.484 0.179 −0.121−1.921

Baseline
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Compression Methods 10

Layer 1 Layer 2
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HowMany Bits DoWe Need? 11
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Binary Connect (BC) 12

BC straight through principle:

1 Map weight values to their signs (1 or−1).

2 Compute feed forward and back propagation.

3 Update initial floating point values.

BinaryWeight Network (BWN) outperforms BC by adding a
scaling factor (−α or α).
Comparison of accuracy between baseline, BC and BWN on CIFAR10.

Resnet34 Densenet121 MobilenetV2
Full-precision 95.0% 95.0% 93.8%
BC 93.6% 94.5% 93.0%
BWN 94.3% 94.7% 93.4%
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Compression Methods 13

Layer 1 Layer 2
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Compression Methods 13

Layer 1 Layer 2
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Pruning 14

Evaluate the importance of neurons and eliminate the least
important ones to reduce neural network size.

Non structured pruning: eliminate neurons independently, only
exploitable for very large levels of sparsity.

Structured pruning: eliminate kernels, filters or even layers,
exploitable for even low levels of sparsity.
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Structured pruning and shift layers 15
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Shift Attention Layer (SAL)
Simplified operations,
Reduced number of parameters,
Fully exploitable technique.
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Experimental Results 16

Comparison of accuracy, number of parameters and number of floating point
operations (FLOPs) using ResNet architectures.

Method CIFAR10 CIFAR100
Accuracy NP (M) MFLOPs Accuracy NP (M) MFLOPs

Pruned-B 93.06% 0.73 91 73.6% 7.83 616
NISP 93.01% 0.49 71 − − −
PCAS 93.58% 0.39 56 73.84% 4.02 475
SAL 93.6% 0.36 42 77.6% 3.9 251
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Quantized Shift Layers 17

Shift Layers + BC or BWN
Shift layer: replace a convolution by a multiplication.
BC/BWN: replace a multiplication by a low-cost multiplexer.
Shift layer +BC/BWN: replace a convolution by a low-cost
multiplexer.

Comparison of accuracy and memory usage between Resnet-20 baseline,
SAL, SAL with BC and SAL with BWN on CIFAR10.

Accuracy(%) Memory(Mb)
Baseline 94.66 39.04
SAL 95.52 31.36
SAL + BC 93.20 6.87
SAL + BWN 94.00 6.87
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Comparison of Methods 18
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Conclusion



Conclusion 19

Compression Methods
Di�erent ways to reduce DNNs size, complexity and thus energy
consumption.
Compression methods are only applicable to the inference part,
and not the learning part.

Directions
Which combinations of quantization methods are e�cient?
Can training process decide the most e�cient number of bits to
quantize values?
Can SAL perform well in other domains than classification?
Can compression methods be reconsidered to reduce training
complexity?
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