

EPITAXIAL QUANTUM DOT LASERS GROWN ON SILICON FOR ISOLATOR-FREE OPERATION IN PHOTONIC INTEGRATED TECHNOLOGIES

JIANAN DUAN

SUPERVISOR : FREDERIC GRILLOT TELECOM PARIS

IMT Lille Douai

École Mines-Télécorr

IMT-Université de Lill

retagne-Pays de la Loire

École Mines-Télécon

Business School

SILICON PHOTONICS APPLICATIONS

TELECOM

> 10 km

Metro & Access

1.5 μm

Transceivers modules

DATACOM

1m – 10 km

Routers & switches

- I 1.3 μm
- Rack-to-rack
- Board-to-board

COMPUTERCOM -

- <1m
- Photonics integrated circuits

- ∎ 1.3 µm
- Transceivers on chip

PHOTONICS INTEGRATED TECHNOLOGIES

Photonics Integrated Circuits on silicon

- CMOS compatible
- Low cost, high integration density, small footprint

WDM

InP monolithic integration

Heterogeneous silicon - III/V

Monolithic Silicon photonics MIT

Refs: J. Norman et al., APL Photonics 3, 030901, 2018

10000

1000

7infinera

UCSB

CHALLENGES IN SILICON PHOTONICS

Hybrid III-V/Si lasers

> Reflections due to the various interfaces between the active/passive transitions

> Sub-cavities in the silicon waveguide

On-chip optical isolators are expensive Isolator-free optical transmitters are required

Refs: G. Duan et al., IEEE J. Sel. Top. Quantum Electron, vol.20, No.4, 2014 K. Schires et al., IEEE J. Sel. Top. Quantum Electron, vol. 22, No. 6, 2016

OUTLINE

External optical feedback
InAs/GaAs QD laser studied
Feedback and dynamic properties
Conclusion

EXTERNAL OPTICAL FEEDBACK

Lang & Kobayashi Model :

$$\frac{d\tilde{E}(t)}{dt} = \left\{ \frac{1}{2} (1 + i\alpha_H) \left[\Gamma G_N(N(t) - N_{tr}) - \frac{1}{\tau_p} \right] + i\omega_0 \right\} \tilde{E}(t) + \kappa \tilde{E}(t - \tau_{ext})$$

Key parameters :

- Feedback strength : $r_{ext} = P_{return}/P_{out}$ Cavity coupling factor : $C_l = \frac{1-R}{2\sqrt{R}}$
- > Long-delay: $f_{RO} \times \tau_{ext} > 1$

 $\boldsymbol{\kappa} = \frac{1}{\tau_{in}} 2C_l \sqrt{r_{ext}}$

Feedback coefficient

Refs: J. Ohtsubo, Semiconductor Lasers (3rd Ed.), Springer, 2013 K. Petermann, Laser Didde Modulation and Noise, Kluwer Academic Publishers, 1988

SENSITIVITY TO OPTICAL PERTURBATIONS

Maximum feedback ratio for a stable operation into a communication system

Ref: H. Huang, Ph. D. thesis, Télécom Paristech, 2017

FEEDBACK-INSENSITIVE SEMICONDUCTOR LASERS

INAS/GAAS QD DIRECTLY GROWN ON SILICON

Advantageous for laser devices

- Low cost
- Power efficient
- High thermal stability
- Long device lifetime

Refs: J. Norman et al., APL Photonics 3, 030901, 2018 K. Nishi et al., IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 6, 2017

DEVICE STUDIED (I)

QD FP lasers epitaxially grown on silicon

- ≻ L: 1.1 mm; RWG: 4 µm
- > 5 dot layers

Dot density: 5 x10¹⁰ cm⁻² per layer
Inhomogeneous width ~ 15 meV

DEVICE STUDIED (II)

QD FP lasers epitaxially grown on silicon

- Threshold current : 6 mA @ 20°C
- > Gain peak : 1.3 µm (GS)
- > No ES (single state lasing)

DEVICE STUDIED (III)

Hybrid III-V/Si QW lasers

- L: 1.5 mm; RWG: 4 μm
- > 7 InAlGaAs QWs
- Threshold current : 36 mA @ 20°C
- Gain peak : 1.5 µm

Ref: M. Davenport et al., IEEE J. Sel. Top. Quantum Electron, vol.22, No.6, 2016

STATIC OPTICAL FEEDBACK APPARATUS

Experimental conditions :

- \succ Laser @ 3xlth and 20^oC
- External cavity frequency : 14 MHz
- Largest maximum feedback ratio : -7 dB

HYBRID III-V/SI QW LASERS

Destabilization route with birth of spectral broadening and coherence collapse for a feedback strength beyond – 30 dB
High feedback sensitivity problematic for PIC integration

QD LASER ON SILICON

- No spectral instabilities and broadening
- No complex dynamics is observed even at the highest feedback strength of – 7 dB

Complete reflection insensitivity achieved

DYNAMIC OPTICAL FEEDBACK APPARATUS

2 km transmission

HIGH-SPEED EXPERIMENTS

Excellent stability without any performance degradation

LINEWIDTH ENHANCEMENT FACTOR

Low α_H results from :

- \succ Low threading dislocations: 7.3 x10⁶ cm⁻²
- Large QD size uniformity
- Emission on the sole GS

Stability criterion

$$r_{crit} = \frac{\tau_{in}^2 \gamma^2}{16C_l^2} \left(\frac{1+\alpha_H^2}{\alpha_H^4}\right)$$

DAMPING AND RELAXATION OSCILLATION

Stability criterion

CONCLUSIONS & OUTLOOK

QD lasers epitaxially grown on silicon exhibit a complete reflection insensitivity

This unique feature mostly results from the narrow QD size dispersion and the absence of emission from higher energy level

- > Near zero $\alpha_{\rm H}$ factor
- High damping

Strong potential for isolator-free transmission in future silicon photonics systems

Further investigation will focus on single mode lasers (DFB)

THANK YOU FOR YOUR ATTENTION !

