

EFFET DE PROCÉDÉS AVANCÉS DE RECHARGEMENT DES SURFACES SUR LES MÉCANISMES DE DÉFORMATION ET USURE DES OUTILLAGES DE FORGEAGE À CHAUD DES PIÈCES AÉRONAUTIQUES

E. CABROL C. BOHER, V. VIDAL, F. REZAÏ-ARIA, F. TOURATIER

Contexte industriel Forgeage à chaud de pièces pour l'aéronautique

FORGEAGE À CHAUD

Stellite 21 ÉCOULEMENVIG PLASTIQUE

ROOF : Revêtements Optimisés pour Outillages de Forge

11/12/2015

MINES Albi-Carmaux

Stellites gardent structure CFC métastable à T ambiante Stellites faible EDE (10-50 mJ/m²) EDE dépend des éléments d'alliages :

Fe, Mn, Ni, C stabilisent structure CFC and **オ** EDE Cr, Mo, W, Si stabilisent structure HC and **↓** EDE

MINES

Albi-Carmaux

Procédés

11/12/2015

[Levêque, R. (2007), Traitements et revêtements de surface des métaux (p. 243)]

MIG

A = volume de matériau d'apport B = volume de substrat fondu

Microstructure : *influence du procédé*

Stellite 21

MIG

Dureté : Dilution & Teneur en fer

11/12/2015

Stellite 21

Tribomètre fortes charges à chaud

PARTIE ACTIVE

Échantillons et paramètres d'essais

Déformation plastique de la surface des rechargements

Dendrites: large plastic flow Main velocity accomodation mechanism

shearing of dendritic and interdendritic spaces. Grain reorientation according to the sliding direction

Ecrouissage sous sollicitations tribologiques

Hardness 7Max value \approx 700HV_{0,3}

Evolution du facteur de frottement

Albi-Carmaux

Structure cristallographique après essai tribologique dans les zones de contact

Comportement au frottement

- Comparaison des 3 types de rechargements
 - MIG
 - Laser
 - PTA

Métallurgie de soudage différente

- Rechargements industriels sur matrices aéronautiques
- Le laser et le PTA donnent de bons résultats également sous presse industrielle
- Baisse significative du coefficient de frottement dans le cas des rechargements PTA et laser
 - changement de phase CFC/HC
 - En lien direct avec la dilution engendrée par lors du rechargement

